DOI QR코드

DOI QR Code

하이브리드 코팅시스템에 의한 Cr-Si-O-N 코팅막 합성 및 기계적 성질

이정두;왕치민;김광호
Lee, Jeong-Doo;Wang, Qi Min;Kim, Kwang-Ho

  • 투고 : 2010.09.09
  • 심사 : 2010.10.30
  • 발행 : 2010.10.31

초록

In the present work, the influence of oxide on the Cr-Si-N coatings was investigated for the Cr-Si-O-N coatings on AISI 304 and Si wafer deposited by hybrid system, which combines the DC magnetron sputtering technique and arc ion plating (AIP) using Cr and Si target in an $Ar/N_2/O_2$ gaseous mixture. As the O content in the Cr-Si-N coatings increased, the diffraction patterns of the Cr-Si-O-N coatings showed CrN and $Cr_2O_3$ phases. However, as the O content increased to 28.8 at.%, diffraction peak of $Cr_2O_3$ was disappeared in the Cr-Si-O-N coating. The $d_{200}$ value was decreased with increasing of O content. The average grain size increased from about 40 nm to 65 nm as the O content increased. The maximum micro-hardness of the Cr-Si-O-N coating was obtained 4507 Hk at the O content of 24.8 at.%. The average friction coefficient of the Cr-Si-O-N coatings was gradually decreased by increasing the O content and the average friction coefficient decreased from 0.37 to 0.25 by increasing the O content. These results indicated that amorphous phase was increased in the Cr-Si-O-N coatings by increasing of O content.

키워드

Influence of oxide;Cr-Si-O-N;Hybrid system;Micro-hardness;$Cr_2O_3$;Average friction coefficient;Amorphous

참고문헌

  1. C. Rebholz, H. Ziegele, A. Leyland, A. Matthew, Surf. Coat. Technol. 115 (1999) 222. https://doi.org/10.1016/S0257-8972(99)00240-6
  2. J, Creus, H. Idriss, H. Mazilie, F, Sanchette, p, Jaequot, Surf. Coat. Technol. 107 (1998) 183. https://doi.org/10.1016/S0257-8972(98)00646-X
  3. P. H. Mayrhofer, H. Willmann, C. Mitterer, Surf. Coat. Technol. 146-147 (2001) 222. https://doi.org/10.1016/S0257-8972(01)01471-2
  4. B. Navinsek, P. Panjan, I. Mirosev, Surf. Coat. Technol. 97 (1997) 182. https://doi.org/10.1016/S0257-8972(97)00393-9
  5. B. Navinsek, P. Panjan, Surf. Coat. Technol. 74-75 (1995) 919. https://doi.org/10.1016/0257-8972(95)08287-5
  6. D. H. Jung, J. H. Joo, Surf. Coat. Technol. 169-170 (2003) 424.
  7. J. J. Nainamparampil, J. S. Zavinski, A. KoreniyBoth, Thin Solid Films 333 (1998) 88. https://doi.org/10.1016/S0040-6090(98)00840-2
  8. S. Ulrieh, S. Sattel, Thin Solid Films 437 (2003) 164. https://doi.org/10.1016/S0040-6090(03)00595-9
  9. J. Vetter, E. Lugshider, S. S. Guerreiro. Surf. Coat. Technol. 98 (1998) 1233. https://doi.org/10.1016/S0257-8972(97)00238-7
  10. J. Almer, M. Aasek, M. Oden, G Hakansson, Thin Solid Films 385 (2001) 190. https://doi.org/10.1016/S0040-6090(01)00759-3
  11. B. Rother, H. Kappl, Surf. Coat. Technol. 96 (1997) 163. https://doi.org/10.1016/S0257-8972(97)00074-1
  12. S. H. Yao, Y. L. Su, Wear 212 (1997) 85. https://doi.org/10.1016/S0043-1648(97)00128-2
  13. Y. Wu, X. Wu, G Li, G Li, International Journal of Refraetory Metals & Hard Materials 26 (2008) 461. https://doi.org/10.1016/j.ijrmhm.2007.11.005
  14. H. C. Barshilia, K. S. Rajam, Appl. Surf. Sci. 255 (2008) 2925. https://doi.org/10.1016/j.apsusc.2008.08.057
  15. W. Y. Ho, D. H. Huang, L. T. Huang, C. H. Hsu, D. Y. Wang, Surf. Coat. Technol. 177-178 (2004) 172. https://doi.org/10.1016/j.surfcoat.2003.06.017
  16. F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, H. Sato, A. Nishijima, A. Kawana, H. Ichimura, T. Kikuchi, J. Vac. Sci. Technol, A. Vac. Surf. Films 15 (1997) 2521. https://doi.org/10.1116/1.580764
  17. J. H. Park, W. S. Chung, Y. R. Cho, K. H. Kim, Surf. Coat. Technol. 188-189 (2004) 425. https://doi.org/10.1016/j.surfcoat.2004.08.045
  18. J. W. Kim, K. H. Kim, D. B. Lee, J. J. Moore, Surf. Coat. Technol. 200 (2006) 6702. https://doi.org/10.1016/j.surfcoat.2005.10.004
  19. M. Diserens, J. Patseheider, F. Levy, Surf. Coat. Technol. 108 (1998) 241. https://doi.org/10.1016/S0257-8972(98)00560-X
  20. B. D. Cullity, in Elements of X-ray Diffraetion, 2nd ed. (Addison-Wesley Massaehusetts, 1978), pp.101-103,288.
  21. J. Proehazaka, P. Karvankovam, M. G J. Veprek-Heijman, S. Veprek, Mater. Sci. Mater. A 384 (2004) 102, https://doi.org/10.1016/j.msea.2004.05.046
  22. M. H. Lee, K. H. Kim, J. Vac, Sci, Technol., A 21(4) (2003) 895. https://doi.org/10.1116/1.1576765
  23. A. Jung, H. Natter, R. Hempelmann, E. Laeh, J. Master. Sci., 44 (2009) 2725. https://doi.org/10.1007/s10853-009-3330-1
  24. S. H. Kim, J. K. Kim, K. H. Kim, Thin Solid Films 420 (2002) 360. https://doi.org/10.1016/S0040-6090(02)00833-7
  25. J. F. Moulder, W. F. Stiekle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., Minnesota, (1995) 238.
  26. I. Biezo, V. K. Josepovits, F. Pavlyak, J. Giber, Appl. Surf. Sci., 65-66 (1993) 157. https://doi.org/10.1016/0169-4332(93)90652-R
  27. P. Mareus, J. M. Grimal, Corrosion Scienee, 33, (1992) 805. https://doi.org/10.1016/0010-938X(92)90113-H
  28. S. Agouram, F. Bodart, G. Terwagne Surf. Coat. Technology, 180-181 (2004) 164. https://doi.org/10.1016/j.surfcoat.2003.10.060
  29. S. Veprek, J. Vac. Sci. Technol., A, Vac. Surf. Films 17 (1999) 2401. https://doi.org/10.1116/1.581977
  30. A. Lasalmonie, J. L. Strudel, J. Master. Sci. 21 (1986) 1837. https://doi.org/10.1007/BF00547918
  31. J. Patseheider, T. Zehnder, M. Diserens, Surf. Coat. Technol. 146 (2001) 201. https://doi.org/10.1016/S0257-8972(01)01389-5
  32. B. S. Mann, B. Prakash, Wear. 240(1-2) (2000) 223. https://doi.org/10.1016/S0043-1648(00)00390-2
  33. H. Liu, J. Tao, J. Xu, Z. Chen, Q. Gao, Surf. Coat. Technol. 204 (2009) 28. https://doi.org/10.1016/j.surfcoat.2009.06.020

피인용 문헌

  1. A Comparative Study of CrN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Metallic Bipolar Plate vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.390

과제정보

연구 과제 주관 기관 : 한국과학재단