DOI QR코드

DOI QR Code

Application of Research Paper Recommender System to Digital Library

연구논문 추천시스템의 전자도서관 적용방안

  • 여운동 (한국과학기술정보연구원) ;
  • 박현우 (한국과학기술정보연구원) ;
  • 권영일 (한국과학기술정보연구원) ;
  • 박영욱 (한국과학기술정보연구원)
  • Received : 2010.10.14
  • Accepted : 2010.11.25
  • Published : 2010.11.28

Abstract

The progress of computers and Web has given rise to a rapid increase of the quantity of the useful information, which is making the demand of recommender systems widely expanding. Like in other domains, a recommender system in a digital library is important, but there are only a few studies about the recommender system of research papers, Moreover none is there in korea to our knowledge. In the paper, we seek for a way to develop the NDSL recommender system of research papers based on the survey of related studies. We conclude that NDSL needs to modify the way to collect user's interests from explicit to implicit method, and to use user-based and memory-based collaborative filtering mixed with contents-based filtering(CF). We also suggest the method to mix two filterings and the use of personal ontology to improve user satisfaction.

Keywords

Recommender System;Personalisation;Collaborative Filtering;Digital Library

References

  1. 강남규, 조민희, 권오석, “NDSL 검색 질의어와 기술용어간의 관계에 대한 분석적 연구”, 정보관리연구, 제39권, 제3호, pp.163-177, 2008. https://doi.org/10.1633/JIM.2008.39.3.163
  2. 유사라, “국가과학기술전자도서관 이용자 정보요구와 이용 행태 분석", 한국문헌정보학회지, 제36권, 제1호, pp.25-40, 2002. https://doi.org/10.4275/KSLIS.2002.36.1.025
  3. 정영미, 이용구, "필터링 기법을 이용한 도서 추천시스템 구축", 정보관리연구, 제33권, 제1호, pp.1-17, 2002. https://doi.org/10.1633/JIM.2002.33.1.001
  4. 최광남, 이재윤, 조현양, "KCI 활용을 위한 지표에 관한 연구", 정보관리연구, 제37권, 제2호, pp.21-31, 2006. https://doi.org/10.1633/JIM.2006.37.2.021
  5. A. F. Smeaton and J. Callan, “Personalisation and recommender systems in digital libraries", International Journal on Digital Libraries, Vol.57, No.4, pp.299-308. 2005.
  6. A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and Metrics for Cold-start Recommendations", in Proceedings of 25th annual international ACM SIGIR conference on Research and development in information retrieval, Tampere, Finland, pp.253-260. 2002.
  7. A. S. Das , M. Datar, A. Garg and S. Rajaram, “Google news personalization: scalable online collaborative filtering", Proceedings of the 16th international conference on World Wide Web, 2007.
  8. B. Rous, “The ACM digital library", Communications of the ACM, Vol.44, No.5, pp.90-91. 2001. https://doi.org/10.1145/374308.374363
  9. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-Based Collaborative Filtering Recommendation Algorithms", Proc. 10th Int’'l WWW Conf., 2001.
  10. F. Gao, C. Xing, X. Du, and S. Wang, “Personalized Service System Based on Hybrid. Filtering for Digital Library", Tsinghua Science and Technology, Vol.12, No.1, pp.1-8, 2007. https://doi.org/10.1016/S1007-0214(07)70001-9
  11. G. Adomavicius, A. Tuzhilin, “Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions", IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.6, pp.734-749,2005. https://doi.org/10.1109/TKDE.2005.99
  12. H. Avancini, L. Candela and U. Straccia, “Recommenders in a personalized, collaborative digital library environment", J. Intell. Inf. Syst. Vol.28, No.3, pp.253-283. 2007. https://doi.org/10.1007/s10844-006-0010-3
  13. H. Small, “Co-citation in the scientific literature: a new measure of the relationship between two documents", Journal of the American Society for Information Science, Vol.24, No.4, pp.265–269. 1973 https://doi.org/10.1002/asi.4630240406
  14. http://lib-www.lanl.gov/lww/mylibweb.htm
  15. I. E. Liao, S. C. Liao, K. F. Kao, and I. F. Harn, “A Personal Ontol-ogy Model for Library Recommendation System,” in The 9th International Conference on Asian Digital Libraries (ICADL 2006), pp.173-182, 2006.
  16. J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl,"GroupLens: Applying Collaborative Filtering to “Usenet News", Commun ACM, Vol.40, No.3, pp.77-87, 1997. https://doi.org/10.1145/245108.245126
  17. J. Callan and M. Connell, “Query-based sampling of text databases", ACM Transactions on Information Systems (TOIS), Vol.19, No.2, pp.97-130, 2001. https://doi.org/10.1145/382979.383040
  18. J. L. Herlocker, J. A. Konstan, A. Borchers and J. Riedl, “An Algorithmic Framework for Performing Collaborative Filtering", in Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.230-237, 1999.
  19. K. Goldberg, T. Roeder, D. upta, and C. Perkins, “Eigentaste: A Constant Time Collaborative Filtering Algorithm", Inf.Retr., Vol.4, No.2, pp.133-151, 2001. https://doi.org/10.1023/A:1011419012209
  20. M. Balabanovic and Y. Shoham. Fab, “Content-Based, Collaborative Recommendation", Communications of the ACM, Vol.40, No.3, pp.66-72. 1997. https://doi.org/10.1145/245108.245124
  21. M. M. Kessler, “Bibliographic coupling between scientific papers”, American Documentation, Vol.14, pp.10-25, 1963. https://doi.org/10.1002/asi.5090140103
  22. N. R. Smalheiser, “The Arrowsmith project: 2005 status report", Lecture Notes in Artificial Intelligence. Vol.3735. pp.26-43. 2005.
  23. N. R. Smalheiser, V. I. Torvik, W. Zhou, “Arrowsmith two-node search interface: A tutorial on finding meaningful links between two disparate sets of articles in MEDLINE", Computer Methods and Programs in Biomedicine, Vol.94, No.2, pp.190-197, 2009. https://doi.org/10.1016/j.cmpb.2008.12.006
  24. NSF, N.S.F. Academic Research and Development. 1999.
  25. R. Jin, L. Si, C. Zhai, and J. Callan, “Collaborative filtering with decoupled models for preferences and ratings", In Proceedings of CIKM 2003, pp.309-106, 2003.
  26. R. Torres, S. McNee, M. Abel, J. Konstan and J. Riedl, “Enhancing digital libraries with TechLens+", In Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries. ACM Press, Tuscon, AZ, USA, pp.228-236. 2004. https://doi.org/10.1109/JCDL.2004.1336126
  27. S. E. Middleton , N. R. Shadbolt and D. C. De Roure, “Ontological user profiling in recommender systems", ACM Transactions on Information Systems (TOIS), Vol.22, No.1, pp.54-88, 2004. https://doi.org/10.1145/963770.963773
  28. S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S. K. Lam, A. Rashid, J. A. Konstan, and J. Riedl, “On the recommending of citations for research papers", In Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, CSCW '02. ACM, New York, NY, pp.116-125, 2002.
  29. S. M. M.cNee, N. Kapoor, and J. A. Konstan, “on' Look Stupid: Avoiding Pitfalls when Recommending Research Papers”, In Proceedings of the 2006 ACM Conference on Computer Supported Cooperative Work (CSCW 2006), Banff, Canada, 2006.
  30. U. Shardanand and P. Maes, “Social Information Filtering: Algorithms for Automating Word of Mouth", in Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pp.210-217, 1995.

Cited by

  1. A Customer Profile Model for Collaborative Recommendation in e-Commerce vol.11, pp.5, 2011, https://doi.org/10.5392/JKCA.2011.11.5.067