Risk Evaluation of Slope Using Principal Component Analysis (PCA)

주성분분석을 이용한 사면의 위험성 평가

  • Jung, Soo-Jung (Dept. of Civil & Environ. Engrg., Korea Maritime Univ.) ;
  • Kim, -Yong-Soo (Research Group, Korea Infrastructure Safety&Technology Corporation) ;
  • Kim, Tae-Hyung (Dept. of Civil Engrg., Korea Maritime Univ.)
  • 정수정 (한국해양대학교 토목환경공학과) ;
  • 김용수 (한국시설안전공단 네트워크연구단) ;
  • 김태형 (한국해양대학교 토목공학과)
  • Received : 2010.09.07
  • Accepted : 2010.10.07
  • Published : 2010.10.31

Abstract

To detect abnormal events in slopes, Principal Component Analysis (PCA) is applied to the slope that was collapsed during monitoring. Principal component analysis is a kind of statical methods and is called non-parametric modeling. In this analysis, principal component score indicates an abnormal behavior of slope. In an abnormal event, principal component score is relatively higher or lower compared to a normal situation so that there is a big score change in the case of abnormal. The results confirm that the abnormal events and collapses of slope were detected by using principal component analysis. It could be possible to predict quantitatively the slope behavior and abnormal events using principal component analysis.

References

  1. 문진한 (2009), "수치실험 및 주성분 분석에 의한 진해만해역의 적조발생요인에 관한 연구", 전남대학교 대학원 박사학위논문.
  2. 박현욱, 류찬수 (2005), "주성분분석을 이용한 하계 강수량의 순변화 유형과 특성, 대한지리학회 2005년 춘계학술대회.
  3. 신상일 (2006), "PCA 기법과 히스토그램 평활화를 이용한 얼굴 인식에 관한 연구", 광운대학교 정보통신대학원, 석사학위논문.
  4. 이도헌 (2007), "주성분분석을 이용한 지뢰인식 시스템", 조선대학교 대학원 석사학위논문.
  5. 이재영, Yuko Sato, 강미아, 정교철 (2005), "주성분분석기법을 적용한 온천 및 폐광산 오염원에 대한 하천수질평가", Journal of Engineering Geology, Vol.15, No.4, Dec., 2005, pp.381-390.
  6. 이지연 (2009), 주성분 분석을 통해 만들어진 대리변수의 정확도 측정 : 부(wealth) 변수를 중심으로, 통계청 대학원생 논문대회 우수논문집 제5권.
  7. 조일형, 김용섭, 조경덕 (2005), "주성분분석을 이용한 환경영향평가와 사후환경조사의 비교 및 평가에 관한 사례연구", 한국환경보건학회지 제31권 제2호, pp.134-146.
  8. 한국시설안전공단 (2004), 절토사면 유지관리 매뉴얼.
  9. 한국건설기술연구원 (2006), 도로절토사면 유지관리시스템 개발 및 운용.
  10. Basilevsky, A (1994) Statistical Factor Analysis and Related Methods, Theory and Applications. John Wiley & Sons, New York, NY.
  11. Everitt, B. S. and Dunn, G. (1992) Applied Multivariate Data Analysis. Oxford University Press, New York, NY.
  12. Harkat, M. F., Djelel, S., Doghmane, N. and Benouaret, M. (2007), "Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analysis", International Journal of Automation and Computing, Vol.4, No.2, April 2007, pp.149-155 https://doi.org/10.1007/s11633-007-0149-6
  13. Muniz, A.M.S. and Nadal, J. (2009), "Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait", Gait & Posture Vol.29, January 2009, pp.31-35. https://doi.org/10.1016/j.gaitpost.2008.05.015
  14. Pearson, K. (1901), "On Lines and Planes of Closest Fit to Systems of Points in Space", Phil. Mag. 2, 559-572. https://doi.org/10.1080/14786440109462720
  15. Raychaudhuri, S., Stuart J. M. and Altman R. B. (2000), Principal Component Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series, Pacific Symposium on Biocomputing 5, pp.452-463.
  16. Sun, Z., Bebis, G., Yuan, X. and Louis, S. J. (2002), "Genetic Feature Subset Selection for Gender Classification: A Comparison Study", Applications of Computer Vision, 2002(WACV 2002). Proceeding Sixth IEEE Workshop, pp.165-170.
  17. Tian, F., Rades, T. and Sandler, N. (2008), "Visualizing Solvent Mediated Phase Transformation Behavior of Carbamazepine Polymorphs by Principal Component Analysis", AAPS PharmSciTech, Vol.9, No.2, June 2008, pp.390-394. https://doi.org/10.1208/s12249-008-9049-5