Dechlorination of High Concentrations of Tetrachloroethylene Using a Fixed-bed Reactor

DOI QR코드

DOI QR Code

Chang, Young-C.;Park, Chan-Koo;Jung, Kweon;Kikuchi, Shintaro

  • 투고 : 2010.07.01
  • 심사 : 2010.08.12
  • 발행 : 2010.08.30

초록

We evaluated the properties of a fixed-bed column reactor for high-concentration tetrachloroethylene (PCE) removal. The anaerobic bacterium Clostridium bifermentans DPH-1 was able to dechlorinate PCE to cis-1,2-dichloroethylene (cDCE) via trichloroethylene (TCE) at high rates in the monoculture biofilm of an upflow fixed-bed column reactor. The first-order reaction rate of C. bifermentans DPH-1 was relatively high at $0.006\;mg\;protein^{-1}{\cdot}l{\cdot}h^{-1}$, and comparable to rates obtained by others. When we gradually raised the influent PCE concentration from $30\;{\mu}M$ to $905\;{\mu}M$, the degree of PCE dechlorination rose to over 99% during the operation period of 2,000 h. In order to maintain efficiency of transformation of PCE in this reactor system, more than 6 h hydraulic retention time (HRT) is required. The maximum volumetric dechlorination rate of PCE was determined to be $1,100\;{\mu}mol{\cdot}d^{-1}l$ of reactor $volume^{-1}$, which is relatively high compared to rates reported previously. The results of this study indicate that the PCE removal performance of this fixed-bed reactor immobilized mono-culture is comparable to that of a fixed-bed reactor mixture culture system. Furthermore, our system has the major advantage of a rapid (5 days) start-up time for the reactor. The flow characteristics of this reactor are intermediate between those of the plug-flow and complete-mix systems. Biotransformation of PCE into innocuous compounds is desirable; however, unfortunately cDCE, which is itself toxic, was the main product of PCE dechlorination in this reactor system. In order to establish a system for complete detoxification of PCE, co-immobilization of C. bifermentans DPH-1 with other bacteria that degrade cDCE aerobically or anaerobically to ethene or ethane may be effective.

키워드

Clostridium bifermentans DPH-1;dechlorination;tetrachloroethylene;monoculture;bioreactor

참고문헌

  1. Afroza, H. S., Hasegawa, Y., Nomura, I., Chang, Y.C., Sato, T. and Takamizawa, K. : Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnology and Bioprocess Engineering 10, 40-46, 2005. https://doi.org/10.1007/BF02931181
  2. Aulenta, F., Majone, M., Verbo, P. and Tandoi, V. : Complete dechlorination of tetrachloroethene to ethane in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation 13, 411-424, 2002. https://doi.org/10.1023/A:1022868712613
  3. Aulenta, F., Fina, A., Potalivo, M., Papini, M. P., Rossetti, S. and Majone, M. : Anaerobic transformation of tetrachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Water Science and Technology, 52, 357-362, 2005.
  4. Aulenta, F., Di Tomassi, C., Cupo, C., Papini, M. P. and Majone, M. : Influence of hydrogen on the reductive dechlorination of tetrachloroethene (PCE) to ethene in a methanogenic biofilm reactor: Role of mass transport phenomena. Journal of Chemical Technology & Biotechnology, 81, 1520-1529, 2006. https://doi.org/10.1002/jctb.1562
  5. Brewster, C. Jr, Cherry, J. A. and Gillham, R. W. : A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Journal of Contaminant Hydrology, 73, 249-279, 2004. https://doi.org/10.1016/j.jconhyd.2004.04.001
  6. Carter, S. R. and Jewel, W. J. : Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Research, 27, 607-615, 1993. https://doi.org/10.1016/0043-1354(93)90170-M
  7. Chang, Y. C., Hatsu, M., Jung, K., Yoo, Y. S. and Takamizawa, K. : Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Journal of Bioscience and Bioengineering, 89, 489-491, 2000. https://doi.org/10.1016/S1389-1723(00)89102-1
  8. Cupples, A. M., Spormann, A. M. and McCarty, P. L. : Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environmental Science & Technology, 38, 4768-4774, 2004. https://doi.org/10.1021/es049965z
  9. Damborsky, J : Tetrachloroethene-Dehalogenating Bacteria. Folia Microbiologica, 44, 247-262, 1999. https://doi.org/10.1007/BF02818543
  10. deBruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G. and Zehnder, A. J. B. : Complete biological reductive transformation of tetrachloroethene to ethane. Applied and Environmental Microbiology, 58, 1996-2000, 1992.
  11. Eisenbeis, M., Bauer-Kreisel, P. and Scholz-Muramatsu, H. : Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by Dehalospirillum multivorans in biofilms. Water Science and Technology, 36, 191-198, 1997.
  12. Ensley, B. D. : Biochemical diversity of trichloroethylene metabolism. Annual Review of Microbiology, 45, 283-299, 1991. https://doi.org/10.1146/annurev.mi.45.100191.001435
  13. Fathepure, B. Z., Nengu, J. P. and Boyd, S. T. : Anaerobic bacteria that dechlorinate perchloroethene. Applied and Environmental Microbiology, 53, 2671-2674, 1987.
  14. Fetzener, S. : Bacterial dehalogenation. Applied Microbiology and Biotechnology, 50, 633-657, 1998. https://doi.org/10.1007/s002530051346
  15. Freedman, D. L. and Gossett, G. W. : Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology, 55, 2144-2151, 1989.
  16. Flynn, S. J., Loffler, F. E. and Tiedje, J. M. : Microbial community changes association with a shift from reductive degradation of PCE to reductive degradation of cis-DCE and VC. Environmental Science & Technology, 34, 1056-1061, 2000. https://doi.org/10.1021/es9908164
  17. Gerritse, J., Renard, V., Visser, J. and Gottschal, J. C. : Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Applied Microbiology and Biotechnology, 43, 920-928, 1995. https://doi.org/10.1007/BF02431929
  18. Hoelen, T. P., Cunningham, J. A., Hopkins, G. D., Lebron, C. A. and Reinhard, M. : Bioremediation of cis-DCE at a sulfidogenic site by amendment with propionate. Ground Water Monitoring and Remediation, 26, 82-91, 2006.
  19. Holliger, C., Sehraa, G., Stams, A. J. M. and Zehnder, A. J. B. : A high purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology, 59, 2991-2997, 1993.
  20. Hobber, C., Christiansen, N., Arvin, E. and Ahring, B. K. : Improved dechlorinating incorporation of Dehalospirillum multivorans into granular sludge. Applied and Environmental Microbiology, 64, 1860-1863, 1998.
  21. Isalou, M., Sleep, B. E. and Liss, S. N. : Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environmental Science & Technology, 32, 3579-3585, 1998. https://doi.org/10.1021/es9803052
  22. Hata, J., Miyata, N., Kim, E. S., Takamizawa, K. and Iwahori, K. : Anaerobic degradation of cisdichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. Journal of Bioscience and Bioengineering, 97, 196-201, 2004. https://doi.org/10.1016/S1389-1723(04)70190-5
  23. Komatsu, T., Shinmyo, J. and Momonoi, K : Reductive transformation of tetrachloroethy1ene to ethylene and ethane by an anaerobic filter. Water Science and Technology, 36, 125-132, 1997.
  24. Koziollet, P. D., Bryniok, D. and Knackmuss, H. J. : Ethene as an auxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chloride. Archives of Microbiology, 172, 240-246, 1999. https://doi.org/10.1007/s002030050766
  25. Lee, T. H., Tokunaga, T., Suyama, A. and Furukawa, K. : Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. Journal of Bioscience and Bioengineering, 92, 453-458, 2001. https://doi.org/10.1263/jbb.92.453
  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randell, R. J. : Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275, 1951.
  27. Ma, X., Novak, P. J., Clapp, L. W., Semmens, M. J. and Hozalski, R. M. : Evaluation of hollow-fiber polyethylene membranes for hydrogen delivery to support reductive dechlorination in a soil column. Water Research, 37, 2905-2918, 2003. https://doi.org/10.1016/S0043-1354(03)00111-8
  28. Malachowsky, K. J., Phelps, T. J., Teboli, A. B., Minikin, D. E. and White, D. C. : Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Applied and Environmental Microbiology, 60, 542-548, 1994.
  29. Maymo-Gatell, X., Tandoi, V., Gossett, J. M. and Zinder, S. H. : Characterization of an $H_{2}$-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Applied and Environmental Microbiology, 61, 3928-3933, 1995.
  30. Maymo-Gatell, X., Chien, Y. T., Gossett, J. M. and Zinder, S. H. : Isolation of a bacterium that reductively dechlorination tetrachloroethene to ethane. Science 276, 1568-1571, 1997. https://doi.org/10.1126/science.276.5318.1568
  31. Maymo-Gatell, X., Nijenhuis, I. and Zinder, S. H. : Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". Environmental Science & Technology, 35, 516-521, 2001. https://doi.org/10.1021/es001285i
  32. McCarty, P. L. : Breathing with chlorinated solvents. Science 276, 1521-1522, 1997. https://doi.org/10.1126/science.276.5318.1521
  33. Mendoza-Sanchez, I., Autenrieth, R. L., McDonald, T. J. and Cunningham, J. A. : Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments. Biodegradation 21, 365-377, 2010. https://doi.org/10.1007/s10532-009-9307-6
  34. Noftsker, C. and Watwood, M. E. : Removal of tetrachloroethylene in an anaerobic column bioreactor. Applied Microbiology and Biotechnology, 48, 424-430, 1997. https://doi.org/10.1007/s002530051074
  35. Parsons, F., Wood, P. R. and Demarco, J. J. : Transformation of tetrachloroethane in microcosms and groundwater. Journal of the American Water Works Association, 76, 56-59, 1984.
  36. Parakash, S. M. and Gupta, S. K. : Biodegradation of tetrachloroethylene in upflow anaerobic sludge blanket reactor. Bioresource Technology, 72, 47-54, 2000. https://doi.org/10.1016/S0960-8524(99)90090-1
  37. Rosenthal, H., Adrian, L. and Steiof, M. : Dechlorination of PCE in the presence of $Fe^{0}$ enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55, 661-669, 2004. https://doi.org/10.1016/j.chemosphere.2003.11.053
  38. Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T. K. : Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stuzeri OX1. Nature Biotechnology 18, 775-778, 2000. https://doi.org/10.1038/77344
  39. Schmidt, J. E. and Ahring, B. K. : Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 49, 229-249, 1996.
  40. Scholz-Muramatsu, H., Neumann, A., Messmer, M., Moore, E. and Diekert, G. : Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163, 48-56, 1995. https://doi.org/10.1007/BF00262203
  41. Suyama, A., Iwakiri, R., Kai, K., Tokunaga, T., Sera, N. and Furukawa, K. : Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dechlorination of tetrachloroethene and polychloroethanes. Bioscience, Biotechnology, and Biochemistry, 65, 1474-1481, 2001. https://doi.org/10.1271/bbb.65.1474
  42. U.S. EPA : Superfund NPL Characterization Project: National Results. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA/540/8-91/069, 1991.
  43. U.S. EPA : National revised primary drinking water regulations, volatile synthetic organic chemicals in drinking water: advanced notice of proposed rulemaking. Federal Register, 47, 9349-9358, 1982.
  44. Vogel, T. M. and McCarty, P. L. : Biotransforination of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, 49, 1080-1083, 1985.
  45. Wild, A. P., Winkelbauer, W. and Leisinger, T. : Anaerobic dech1orination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6, 309-318, 1995. https://doi.org/10.1007/BF00695261
  46. Wu, W. M., Nye, J., Hickey, R. F. and Zeikus, J. G. : Dechlorination of PCE and TCE to ethene using an anaerobic microbial consortium. In: Bioremediation of chlorinated solvents. Hinchee, R.E., Leeson, A. and Semprini, L. (eds), Battelle, Columbus Richland, pp.45-52, 1995.
  47. Cabirol, N., Jacob, F., Perrier, J., Fouillet, B. and Chambon, P. : Complete degradation of high concentrations of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. Journal of Biotechnology 62, 133-141, 1998. https://doi.org/10.1016/S0168-1656(98)00053-4
  48. Cole, J. R., Fathepure, B. Z. and Tiedje, J. M. : Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedje DCB-1. Biodegradation 6, 167-172, 1995. https://doi.org/10.1007/BF00695347
  49. Christiansen, N., Christensen, S. R., Arvin, E. and Ahring, B. K. : Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor. Applied Microbiology and Biotechnology, 47, 91-94, 1997. https://doi.org/10.1007/s002530050894
  50. DiStefano, T. D., Gossett, J. M. and Zinder, S. H. : Reductive dechlorination of high concentration of tetrachloroethene to ethane by an anaerobic enrichment culture in the absence of methanogenesis. Applied and Environmental Microbiology, 57, 2287-2292, 1991.
  51. Fathepure, B. Z. and Vogel, T. M. : Complete degradation of polychlorinated hydrocarbons by a twostage biofilm reactor. Applied and Environmental Microbiology, 57, 3418-3422, 1991.
  52. Gerritse, J., Kloetstra, G., Borger, A., Dalstra, G., Alphenaar, A. and Gottschal, J. C. : Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Applied Microbiology and Biotechnology, 48, 553-562, 1997. https://doi.org/10.1007/s002530051096
  53. Hirl, P. J. and Irvine, R. L. : Reductive dechlorination of perchloroethylene using anaerobic sequencing batch biofilm reactors (AnSBBR). Water Science and Technology, 35, 49-56, 1997.
  54. Ma, X., Novak, P. J., Semmens, M. J., Clapp, L. W. and Hozalski, R. M. : Comparison of pulsed and continuous addition of $H_2$ gas via membranes for stimulating PCE biodegradation in soil columns. Water Research, 40, 1155-1166, 2006. https://doi.org/10.1016/j.watres.2006.01.005
  55. Muenzner, H. D., Clapp, L. W., Hozalski, R. M., Semmens, M. J. and Novak, P. J. : Dechlorination of PCE by mixed methanogenic cultures using hollow- fiber membranes. Bioremediation Journal, 6, 337-350, 2002. https://doi.org/10.1080/10889860290777657
  56. Scholz-Muramatsu, H., Szewzyk, R., Szewzyk, U. and Gaiser, S. : Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiology Letters, 66, 81-86, 1990. https://doi.org/10.1111/j.1574-6968.1990.tb03976.x
  57. Sharma, O. K. and McCarty, P. L. : Isolation and characterization of a facultative aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Applied and Environmental Microbiology, 62, 761-765, 1996.
  58. Yamamoto, K., Fukushima, M., Kakutani, N. and Tsuruho, K. : Contamination of vinyl chloride in shallow urban river in Osaka, Japan. Water Research, 35, 561-566, 2001. https://doi.org/10.1016/S0043-1354(00)00278-5