Dielectric Polymers for OTFT Application

  • Choi, Sung-Lan (Department of Display Material Engineering, Kyung Hee Univ.) ;
  • Kim, Yeon-Ok (Department of Display Material Engineering, Kyung Hee Univ.) ;
  • Kim, Hong-Doo (Department of Display Material Engineering, Kyung Hee Univ.)
  • Received : 2010.08.10
  • Accepted : 2010.08.27
  • Published : 2010.09.30

Abstract

A series of new dielectric polymers with phenyl, epoxy, and carboxylicacid functional groups was prepared via free-radical polymerization. The effect of such dielectric polymers with various functional groups on the performance of OTFT was investigated. The nonpolar groups of terpolymer made the surface of the dielectric layer more hydrophobic and improved the crystal growth of pentacene on the gate insulator, resulting in higher mobility. By controlling the functional group, the electric characteristics of OTFT performance was varied, with $0.00017-0.15\;cm^2/V{\cdot}s$ mobility.

References

  1. S. R. Forrest, Nature 428, 911(2004). https://doi.org/10.1038/nature02498
  2. T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, Chem. Mater. 16, 4413( 2004) https://doi.org/10.1021/cm049614j
  3. A. Facchetti, M.-H. Yoon and T. J. Marks, Adv. Mater. 17, 1705(2005). https://doi.org/10.1002/adma.200500517
  4. S. Pyo, S. Lee, and S. Kwon, J. Appl. Phys. 99, 99 (2006).
  5. M. C. Chen, C. Kim, S. Y. Chen, and T. J. Marks, J. Mater. Chem.18, 1029 ( 2008). https://doi.org/10.1039/b715746k
  6. C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, R. Muller, J. Genoe, and P. Heremans, Appl. Phys. Lett. 93, 033305 (2008). https://doi.org/10.1063/1.2958229
  7. L. Burgi, M. Turbiez, R. Pfeiffer, F. Bienewald, H.-J. Kirner, and C.Winnewisser, Adv. Mater. 20, 2217 (2008). https://doi.org/10.1002/adma.200702775
  8. A. Babel, Y. Zhu, K.-F. Cheng, W.-C. Chen, and S. A. Jenekhe, Adv. Funct. Mater. 17, 2542 (2007). https://doi.org/10.1002/adfm.200600312
  9. H. Usta, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 130, 8580(2008). https://doi.org/10.1021/ja802266u
  10. B. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, Adv. Funct. Mater. 18, 1329 (2008). https://doi.org/10.1002/adfm.200701045
  11. H. Tian, J. Shi, D. Yan, L. Wang, Y. Geng, and F. Wang, Adv. Mater. 18, 2149 (2006). https://doi.org/10.1002/adma.200600178
  12. T. Kojima, J.-I. Nishida, S. Tokito, and Y. Yamashita, Chem. Lett. 36, 1198 (2007). https://doi.org/10.1246/cl.2007.1198
  13. M. L. Tang, M. E. Roberts, J. J. Locklin, M. M. Ling, and Z. Bao, Chem. Mater. 18, 6250 (2006). https://doi.org/10.1021/cm0623514
  14. R. Schmidt, S. Goettling, D. Leusser, D. Stalke, A.-M. Krause, and F. Wurthner, J. Mater. Chem. 16, 3708 (2006). https://doi.org/10.1039/b607172d
  15. M. Mas-Torrent and C. Rovira, Chem. Soc. Rev. 37, 827 (2008). https://doi.org/10.1039/b614393h
  16. H. Yan, Y. Zheng, R. Blache, C. Newman, S. Lu, J. Woerle, and A. Facchetti, Adv. Mater. 9999, 1 (2008).
  17. Z. Wang, C. Kim, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 129, 13362 (2007). https://doi.org/10.1021/ja073306f
  18. S. E. Koh, J. E. Mendvedeva, A. Facchetti, B. Delley, A. J. Freeman, T. J. Marks, and M. A. Ratner, J. Phys. Chem. B. 110, 24361 (2006). https://doi.org/10.1021/jp064840x
  19. B. Yoo, D. Basu, T. Jung, D. Fine, B. A. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, K. Dimmier, and A. Dodabalapur, Adv. Mater. 19, 4028 (2007). https://doi.org/10.1002/adma.200700064
  20. J. A. Letizia, M. R. Salata, C. M. Tribout, A. Facchetti, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. 130, 9679 (2008). https://doi.org/10.1021/ja710815a
  21. H. Kong, D. H. Lee, I.-N. Kang, E. Lim, Y. K. Jung, J.-H. Park, T. Ahn, M. H. Yi, C. E. Park, and H.-K. Shim, J. Mater. Chem. 2008, 1895(2008).
  22. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. 130, 7670(2008). https://doi.org/10.1021/ja800424m
  23. H. Yan, Z. Chen, Y. Zheng, C. E. Newman, J. Quin, F. Dolz, M. Kastler, and A. Facchetti, Nature 457, 679(2009). https://doi.org/10.1038/nature07727
  24. Y. W. Choi, I. D. Kim, H. L. Tuller, and A. I. Akinwande, IEEE Trans. Electron Dev. 52(12), 2819(2008).
  25. S. Pyo, M. Lee, J. Jeon, J. H. Lee, M. H. Yi, and J. S. Kim, Adv. Func. Mater. 15(4), 619 (2005). https://doi.org/10.1002/adfm.200400206
  26. Y. Hong, F. Yana, P. Migliorato, S. H. Han , J. Jang, Thin Solid Films, 515, 4032(2007). https://doi.org/10.1016/j.tsf.2006.10.074
  27. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl.Phys. 80(4), 2501 (1996). https://doi.org/10.1063/1.363032
  28. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Device Lett. 18(3), 87(1997). https://doi.org/10.1109/55.556089
  29. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18(12), 606(1997). https://doi.org/10.1109/55.644085
  30. D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys.93(1), 347 (2003). https://doi.org/10.1063/1.1525068
  31. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radilik, and W. Weber, J. Appl. Phys. 92(9), 5259(2002). https://doi.org/10.1063/1.1511826
  32. H. Sirringhaus, N. Tessler, D. S. Thomas, P. J. Brown, and R. H. Friend, Adv. Solid State Phys. 39, 101(1999). https://doi.org/10.1007/BFb0107468