DOI QR코드

DOI QR Code

N-IDEALS OF SUBTRACTION ALGEBRAS

Jun, Young-Bae;Kavikumar, Jacob;So, Keum-Sook

  • Published : 2010.04.30

Abstract

Using $\cal{N}$-structures, the notion of an $\cal{N}$-ideal in a subtraction algebra is introduced. Characterizations of an $\cal{N}$-ideal are discussed. Conditions for an $\cal{N}$-structure to be an $\cal{N}$-ideal are provided. The description of a created $\cal{N}$-ideal is established.

Keywords

subtraction algebra;$\cal{N}$-ideal;$\cal{N}$-subalgebra;created $\cal{N}$-ideal

References

  1. J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
  2. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.
  3. Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464.
  4. Y. B. Jun, K. J. Lee, and S. Z. Song, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
  5. Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1-10. https://doi.org/10.4134/CKMS.2008.23.1.001
  6. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169. https://doi.org/10.1080/00927879208824453
  7. B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.

Cited by

  1. THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N-STRUCTURES vol.27, pp.1, 2012, https://doi.org/10.4134/CKMS.2012.27.1.015
  2. A COUPLED 𝒩-STRUCTURE WITH AN APPLICATION IN A SUBTRACTION ALGEBRA vol.36, pp.4, 2014, https://doi.org/10.5831/HMJ.2014.36.4.863
  3. Anti fuzzy filters of $$CI$$ C I -algebras vol.25, pp.4, 2014, https://doi.org/10.1007/s13370-013-0183-1