DOI QR코드

DOI QR Code

SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM

Jin, Dae-Ho

  • Published : 2010.04.30

Abstract

In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-vanishing smooth function.

Keywords

Einstein lightlike hypersurfaces;screen conformal;Lorentzian space forms

References

  1. C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
  2. C. Atindogbe, J.-P. Ezin, and J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J. 29 (2006), no. 1, 58-71. https://doi.org/10.2996/kmj/1143122387
  3. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  4. K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
  5. K. L. Duggal and D. H. Jin, A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.
  6. D. H. Jin, Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 3, 271-276.
  7. D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
  8. G. de Rham, Sur la reductibilit`e d’un espace de Riemann, Comment. Math. Helv. 26 (1952), 328-344. https://doi.org/10.1007/BF02564308
  9. P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J. (2) 21 (1969), 363-388. https://doi.org/10.2748/tmj/1178242949

Cited by

  1. Lightlike Hypersurfaces of a Golden Semi-Riemannian Manifold vol.14, pp.5, 2017, https://doi.org/10.1007/s00009-017-0999-2
  2. A CHARACTERIZATION THEOREM FOR LIGHTLIKE HYPERSURFACES OF SEMI-RIEMANNIAN MANIFOLDS OF QUASI-CONSTANT CURVATURES vol.30, pp.1, 2014, https://doi.org/10.7858/eamj.2014.002