DOI QR코드

DOI QR Code

LOCALLY CONFORMAL KÄHLER MANIFOLDS AND CONFORMAL SCALAR CURVATURE

Kim, Jae-Man

  • Published : 2010.04.30

Abstract

We show that on a compact locally conformal K$\ddot{a}$hler manifold $M^{2n}$ (dim $M^{2n}\;=\;2n\;{\geq}\;4$), $M^{2n}$ is K$\ddot{a}$hler if and only if its conformal scalar curvature k is not smaller than the scalar curvature s of $M^{2n}$ everywhere. As a consequence, if a compact locally conformal K$\ddot{a}$hler manifold $M^{2n}$ is both conformally flat and scalar flat, then $M^{2n}$ is K$\ddot{a}$hler. In contrast with the compact case, we show that there exists a locally conformal K$\ddot{a}$hler manifold with k equal to s, which is not K$\ddot{a}$hler.

Keywords

compact locally conformal K$\ddot{a}$hler manifold;conformal scalar curvature;K$\ddot{a}$hler;conformally flat and scalar flat;a locally conformal K$\ddot{a}$hler manifold with k equal to s

References

  1. V. Apostolov and P. Gauduchon, The Riemannian Goldberg-Sachs theorem, Internat. J. Math. 8 (1997), no. 4, 421-439. https://doi.org/10.1142/S0129167X97000214
  2. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.
  3. S. Dragomir and L. Ornea, Locally Conformal Kahler Geometry, Progress in Mathematics, 155. Birkhauser Boston, Inc., Boston, MA, 1998.
  4. P. Gauduchon and S. Ivanov, Einstein-Hermitian surfaces and Hermitian Einstein-Weyl structures in dimension 4, Math. Z. 226 (1997), no. 2, 317-326. https://doi.org/10.1007/PL00004342
  5. P. Gauduchon, La 1-forme de torsion d'une variete hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495-518. https://doi.org/10.1007/BF01455968
  6. Z. Hu, H. Li, and U. Simon, Schouten curvature functions on locally conformally flat Riemannian manifolds, J. Geom. 88 (2008), no. 1-2, 75-100. https://doi.org/10.1007/s00022-007-1958-z
  7. J. Kim, Rigidity theorems for Einstein-Thorpe metrics, Geom. Dedicata 80 (2000), no. 1-3, 281-287. https://doi.org/10.1023/A:1005208930993
  8. J. Kim, On Einstein Hermitian manifolds, Monatsh. Math. 152 (2007), no. 3, 251-254. https://doi.org/10.1007/s00605-007-0470-8
  9. I. Vaisman, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl. (4) 132 (1982), 1-18. https://doi.org/10.1007/BF01760974
  10. I. Vaisman, Some curvature properties of locally conformal Kahler manifolds, Trans. Amer. Math. Soc. 259 (1980), no. 2, 439-447. https://doi.org/10.2307/1998239
  11. I. Vaisman, A theorem on compact locally conformal Kahler manifolds, Proc. Amer. Math. Soc. 75 (1979), no. 2, 279-283. https://doi.org/10.2307/2042757