이산형 반응변수에서 오류 분배율 함수를 적용한 집단축차 검정

DOI QR코드

DOI QR Code

김동욱;남진현
Kim, Dong-Uk;Nam, Jin-Hyun

  • 발행 : 2010.01.31

초록

본 논문에서는 중간분석에서 사용되는 집단축차 검정법으로 이산형 반응변수인 경우, 오류 분배율 함수를 적용한 집단축차 검정법을 제안한다. 특히 제 1종 오류와 제 2종 오류를 모두 적용한 집단축차 검정법을 제안하며, 기존의 오류 분배율 함수를 포함하는 새로운 오류 분배율 함수를 제안한다. 반응변수가 이산형인 경우 정확한 크기 ${\alpha}$ 검정을 할 수 없으므로 각 검정단계에 사용될 오류율을 분배하는 대신 각 검정단계까지 사용되어야 할 누적 오류율을 이용한다. 오류 분배율 함수를 적용한 집단축차 검정은 기존의 집단축차 검정 보다 빠른 연산과 유연한 검정이 가능하다는 장점을 지니고 있으며, 본 논문에서 제시된 오류 분배율 함수를 이용해 특성을 비교한다.

키워드

이산형변수;오류 분배율 함수;집단축차;중간분석

참고문헌

  1. Anderson, K. M. (2006). Optimal spending functions for asymmetric group sequential designs, Biometrical Journal, 48, 1-9.
  2. Armitage, P., McPherson, C. K. and Rowe, B. C. (1969). Repeated significance test on accumulating data, Journal of the Royal Statistical Society, Series A, 132, 235-244. https://doi.org/10.2307/2343787
  3. Barber, S. and Jennison, C. (2002). Optimal asymmetric one-sided group sequential tests, Biometrika, 89, 49-60. https://doi.org/10.1093/biomet/89.1.49
  4. Chang, M. N., Therneau, T. M., Wieand, H. S. and Cha, S. S. (1987). Designs for group sequential phase II clinical trials, Biometrics, 43, 865-874. https://doi.org/10.2307/2531540
  5. Chang, M. N., Hwang, I. K. and Shih, W. J. (1998). Group sequential designs using both type I and type II error probability spending functions, Communications in Statistics - Theory and Methods, 27, 1323-1339. https://doi.org/10.1080/03610929808832161
  6. Fleming, T. R. (1982). One-sample multiple testing procedure for phase II clinical trials, Biometrica, 38, 143-151. https://doi.org/10.2307/2530297
  7. Hwang, I. K., Shih, W. J. and DeCani, J. S. (1990). Group sequential designs using a family of type I error probability spending functions, Statistics in Medicine, 9, 1439-1445. https://doi.org/10.1002/sim.4780091207
  8. Kim, K. and DeMets, D. L. (1987). Design and analysis of group sequential tests based on the type I error spending rate function, Biometrika, 74, 149-154. https://doi.org/10.1093/biomet/74.1.149
  9. Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials, Biometrika, 70, 659-663. https://doi.org/10.1093/biomet/70.3.659
  10. Lan, K. K. G. and DeMets, D. L. (1984). More flexible sequential and non sequential designs in long-term clinical trials, Communications in Statistics - Theory and Methods, 13, 2339-2353. https://doi.org/10.1080/03610928408828830
  11. O'Brien, P. C. and Fleming, T. R. (1979). A multiple testing procedure for clinical trials, Biometrics, 35, 549-556. https://doi.org/10.2307/2530245
  12. Pocock, S. J. (1977). Group sequential in design and analysis of clinical trials, Biometrica, 64, 191-199. https://doi.org/10.1093/biomet/64.2.191
  13. Schultz, J. R., Nichol, F. R., Elfring, G. L. and Weed, S. D. (1973). Multiple stage procedures for drug screening, Biometrics, 29, 293-300. https://doi.org/10.2307/2529393
  14. Selwyn, M. R. and Fish, S. M. (2004). Choice of alpha spending function and time points in clinical trials with one or two interim analysis, Pharmaceutical Statistics, 3, 193-203. https://doi.org/10.1002/pst.108
  15. Simon, R. (1988). Optimal two-stage designs for phase II clinical trials, Controlled Clinical Trials, 10, 1-10. https://doi.org/10.1016/0197-2456(89)90015-9