Characterizations of Surface Textured Silicon Substrated by XeF2 Etching System

이불화제논 기상 식각에 의한 실리콘 기판의 표면 텍스쳐링 특성

  • 김선훈 (한국광기술원 연구사업부) ;
  • 기현철 (한국광기술원) ;
  • 김두근 (한국광기술원 광융합시스템센터) ;
  • 나용범 ((주)한국유화 기업부설연구소) ;
  • 김남호 ((주)한국유화 기업부설연구소) ;
  • 김회종 (한국광기술원)
  • Received : 2010.02.26
  • Accepted : 2010.03.20
  • Published : 2010.06.01


We investigated the haze and the surface roughness of textured Si substrates etched by $XeF_2$ etching system with the etching parameters of $XeF_2$ pressure, etching time, and etching cycle. Here the haze was obtained as a function of wavelength from the measured reflectance. The haze of textured Si substrates was strongly affected by the etching parameter of etching cycle. The surface roughness of textured Si substrates was calculated with the haze and the scalar scattering theory at the wavelength of 800 nm. Then, the surface roughness was compared with that measured by atomic force microscope. The surce roughness obtained by two methods was changed with the similar tendency n terms of $XeF_2$ etching conditions.


$XeF_2$ Texturing;Vapor Phase Etching Haze;Roughness


Supported by : 지식경제부


  1. J. S. Yoo, S. K. Dhungel, and J. Yi, "A study on Silicon dry Etching for Solar Cell Fabrication Using Hollow Cathode Plasma System," Trans. KIEE., vol. 53C, No. 2, pp. 62-66, Feb. 2004.
  2. P. Fath and G. Wileke, "Polycrystalline silicon water engineering for photovoltaic applications," Semicond. Sci. Technol., vol.9, pp. 101-104, 1994.
  3. D.-H. Neuhaus and A. Manzer, "Industrial Silicon Water Solar Cell," Advanced in OptoElectrorics, ID 24521, 2007.
  4. M. Python, E. Vallat-Sauvain, J. Bailat, D. Domine, L. Fesquet, A. Shah, and C. Ballif, "Relation between substrate surface morphology and microcrystalline", silicon solar cell performance," J. Non-Cryst. Solids, vol. 354, pp. 2258-2262, 2008.
  5. H. E. Bennett and J. O. Pocteus, "Relation Between Surface Reughness and Specular Reflectance at Normal Incidence," J. Opt. Soc. Am., vol. 51, pp. 123-129, 1961.
  6. S. Winderbaum, O. Reinhold, and F. Yun, "Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cell," Sol. Energy Mater. Sol. Cell, vol. 46, No. 3, pp. 239-248, 1997.
  7. N. Senoussaoui, T. Repmann, T. Brammer, H. Stiebig, and H. Wagner, "Optical Properties of Microcrystallin, Thin Film Solar Cells", Rev. Energ. Ren., vol. 3, pp. 49-56, 2000.
  8. S. DeWolf, P. Choulat, E. Vazsonyi, R. Einhaus, E. Van Kerschaver, K. DE Clercq, and J. Szlufcik, "Towards industrial applications of isotropic texturing for multi-crystalline silicon cells," 16th EC PVSEC, pp. 1521-1524, 2000.
  9. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Cioch, H. Nagel, A. Mylyanych, and P. Panek, "Cost-effective methods of texturing for silicon solar cell," Sol. Energy Mater. Sol. Cell, vol. 72, pp. 291-298, 2002.
  10. H. Saha, S.K. Datta, K. Mukhopadhyay, S. Banerjee, and M.K. Mukherjee, "Influence of surface texturization on the light trapping and spectral response of silicon solar cell," IEEE Trans. Elctron Devices, vol. 39, pp. 1100-1107, 1992.
  11. B. Gonzalez, R. Guerrero-Lemus, B. Diaz-Herrera, N. Marreo, J. Mendez-Ramos, and D. Borchert, "Optimization of roughness, reflection and photoluminescence for acid textured mc-Si solar cells etched at different $HF/HNO_3$ concentrations," Mat. Sci. Eng., vol. B159-160, pp. 295-298, 2009.
  12. Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, and D. Que, "Textrization of cast multicrystalline silicon for solar cell," Semicond. Sci. Technol., vol. 19, pp. 485 - 489, 2004.
  13. J. S. Yoo, J. H. Lee, and J. Yi, "A Study on $MgF_2/CeO_2$ AR Coating of Mono-Crystalline Silicon Solar Cell," Trans. KIEE., vol. 52C, No. 10, pp. 447-450, Oct. 2003.