DOI QR코드

DOI QR Code

Classification and recognition of electrical tracking signal by means of LabVIEW

LabVIEW에 의한 Tracking 신호 분류 및 인식

  • 김대복 (케이디 파워 중앙연구소) ;
  • 김정태 (대진대 공대 전기공학과) ;
  • 오성권 (수원대 공대 전기공학과)
  • Received : 2009.09.25
  • Accepted : 2010.02.03
  • Published : 2010.04.01

Abstract

In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

Keywords

Electrical tracking;Particle Swarm Optimization;Neural Networks;Radial Basis Function Neural Networks;LabVIEW

References

  1. 행정자치부, "2002년도 화재통계연보", 11-1310000-000002-10, 2003
  2. Changchang Wang, Xianhe Jin, et al, "Analysis and Suppression of Continuous Periodic Interference for On-line PD Monitoring of Power Transformers." 1999. Eleventh International Symposium on High Voltage Engineering, Vol. 5, pp 212-215, 1999
  3. 이병호 외. "레이저를 이용한 전력기기 비파괴 열화진단 기술의 개발에 관한 연구", 기초전력공학공동연구소 97-중-04, 2000
  4. 최정내, 김현기, 오성권, "PSO를 이용한 FCM 기반 RBF 뉴럴네트워크의 최적화", 대한전기학회지, Vol. 57, No. 1, pp. 2108-2116, 2008
  5. Chung-Seog Choi, Kil-Mok Shong, Hyung-Rae Kim, Hyang-Kon Kim, and Dong-Woo Kim, "A Study on the Flame Pattern and Electrical Properties of Electric Outlet Fired at Standby Mode", KIFSE Trans. Vol. 16, No. 1, pp.39-44, 2002
  6. 이춘하 외, "전기화재공학", pp 172-211, 2000
  7. 한국전기안전공사, "전기재해 통계분석", 2002
  8. 지승욱, 이춘하, 윤대희, 송현직, 심광열, 박원주, 이광식, "전압파형을 이용한 전기 트래킹 진전과정 분석방법에 관한 연구", 조명․전기설비학회논문지, Vol. 20, No. 8, pp. 30-35, 2006
  9. N. Yoshimura, M. Nishida, F. Noto, "Influence of Electrolyte on Tracking Breakdowm of Organic Insulating Materials", IEEE Transactions on Electrical Insulation, Vol EI-16, No. 6, pp.510-520 Dec. 1981 https://doi.org/10.1109/TEI.1981.298382
  10. Chung-Seog Choi, Kil-Mok Shong, Hyung-Rae Kim, and Dong-Woo Kim, "A Study on the Characteristics of Tracking Deterioration between Electrodes on Phenolic Resin used for Low Voltage", ICEE 2002 Vol. 3, pp.1135-1138
  11. IEC 60112, "Method for the determination of the proof and the comparative tracking indices of solid insulating materials", 2004
  12. 윤진열 외, "GIS 부분방전 검출기술 연구", 한국전력공사, TR.98PJ04.J2002.407, 2002
  13. Robert hecht-Nielsen, "Theory of the Back propagation Neural Network", IJCNN Conference No. 1, pp. 593-605, 1989. 6
  14. Byoung-Jun Park, Witold Pedrycz, and Sung-Kwun Oh, "Polynomial-based Radial Basis Function Neural Networks(P-RBF NNs) and Their Application to Pattern Classification , Applied Intelligence, 2009 9 (in press)
  15. 최충석, 송길목, 김형래, 김향곤, 김동욱, 김동우, "전기 트래킹에 의해 열화된 누전차단기 외함의 특성분석", 2002 한국화재 소방학회 추계학술논문, pp. 47-52
  16. F. Behloul, B.P.F Lelieveldt, A. Boudraa, J.H.C. Reiber, "Optimal design of radial basis function neural networks for fuzzy-rule extraction in high dimensional data", The Journal of the Pattern Recognition Society, Vol. 35, pp. 659-675, 2002 https://doi.org/10.1016/S0031-3203(01)00033-4
  17. J. Kennedy, "Minds and cultures; Particle Swarm implications. Socially Intelligent Agents", Paper from the 1997 AAAI Fall Symposium, 1997.