DOI QR코드

DOI QR Code

UNIVERSAL HYPERDYNAMICAL SYSTEMS

  • Nezhad, A. Dehghan (Department of Mathematics Yazd University) ;
  • Davvaz, B. (Department of Mathematics Yazd University)
  • Received : 2008.11.24
  • Published : 2010.05.31

Abstract

In this paper, the theory of n-ary hypergroups and some applications of hyperalgebras (Fredholm-Voltra integral, copula) are studied. We define some new concepts of topological hyperdynamical systems, universal hyperdynamical systems and immersed universal hyperalgebra. Also, we present some results in this respect.

Keywords

algebra;hyperalgebra;n-ary hypergroup;copula;topological space;hyperdynamical system

References

  1. R. Ameri, Topological (transposition) hypergroups, Ital. J. Pure Appl. Math. No. 13 (2003), 171–176.
  2. R. Ameri and M. M. Zahedi, Hyperalgebraic systems, Ital. J. Pure Appl. Math. No. 6 (1999), 21–32.
  3. P. Corsini, Prolegomena of Hypergroup Theory, Supplement to Riv. Mat. Pura Appl. Aviani Editore, Tricesimo, 1993.
  4. P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Kluwer Academic Publishers, Dordrecht, 2003.
  5. G. Crombez and G. Six, On topological n-groups, Abh. Math. Sem. Univ. Hamburg 41 (1974), 115-124. https://doi.org/10.1007/BF02993505
  6. B. Davvaz, On connection between uncertainty algebraic hypersystems and probability spaces, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 13 (2005), no. 3, 337-345. https://doi.org/10.1142/S0218488505003497
  7. B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci. 30 (2006), no. 2, 165-174.
  8. S. Hoskova, Topological hypergroupoids, submitted.
  9. S. Hoskova, J. Chvalina, and P. Rackova, Transposition hypergroups of Fredholm integral operators and related hyperstructures (Part I), Journal of Basic Science, 4 (2008), no. 1, 43-54.
  10. S. Hoskova and J. Chvalina, Discrete transformation hypergroups and transformation hypergroups with phase tolerance space, Discrete Math. 308 (2008), no. 18, 4133-4143. https://doi.org/10.1016/j.disc.2007.08.005
  11. A. Ilookashooly and M. R. Molaei, Immersed hypergroups, Differ. Geom. Dyn. Syst. 10 (2008), 159-162.
  12. V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, European J. Combin. 29 (2008), no. 5, 1207-1218. https://doi.org/10.1016/j.ejc.2007.06.025
  13. V. Leoreanu-Fotea and B. Davvaz, Join n-spaces and lattices, Journal of Multiple Valued Logic and Soft Computing, v.15, 2008.
  14. V. Leoreanu-Fotea and B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci. 178 (2008), no. 21, 4114-4124. https://doi.org/10.1016/j.ins.2008.06.019
  15. M. R. Molaei, Generalized dynamical systems, Pure Math. Appl. 14 (2003), no. 1-2, 117-120.
  16. R. B. Nelsen, An Introduction to Copulas, 2nd edition, Springer, New York, 2006.
  17. C. Pelea and I. Purdea, Multialgebras, universal algebras and identities, J. Aust. Math. Soc. 81 (2006), no. 1, 121-139. https://doi.org/10.1017/S1446788700014671
  18. M. Sklar, Fonctions de repartition a n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.
  19. L. Vietoris, Bereiche zweiter Ordnung, Monatsh. Math. Phys. 32 (1922), no. 1, 258-280. https://doi.org/10.1007/BF01696886
  20. T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Monographs in Mathematics. Hadronic Press, Inc., Palm Harbor, FL, 1994.

Cited by

  1. From lattices to Hv-matrices vol.24, pp.3, 2016, https://doi.org/10.1515/auom-2016-0055
  2. On EL-semihypergroups vol.44, 2015, https://doi.org/10.1016/j.ejc.2014.08.014
  3. Dynamical systems and congruence relations pp.1563-5104, 2018, https://doi.org/10.1080/03081079.2018.1524468