• Received : 2008.12.13
  • Published : 2010.05.31


Using the fiberization technique of a shift-invariant space and the matrix characterization of the decomposition of a shift-invariant space of finite length into an orthogonal sum of singly generated shift-invariant spaces, we show that the main result in [13] can be interpreted as a statement about the length of a shift-invariant space, and give a more natural construction of multiwavelet frames from a frame multiresolution analysis of $L^2(\mathbb{R}^d)$.


wavelet;frame;multiresolution analysis;shift-invariant space


  1. J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998), no. 4, 389-427.
  2. J. J. Benedetto and O. M. Treiber, Wavelet frames: multiresolution analysis and extension principles, Wavelet transforms and time-frequency signal analysis, 3-36, Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, 2001.
  3. C. de Boor, R. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in L2($R^d$), J. Funct. Anal. 119 (1994), no. 1, 37-78.
  4. M. Bownik, The structure of shift-invariant subspaces of $L^2(R^n$), J. Funct. Anal. 177 (2000), no. 2, 282-309.
  5. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
  6. R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math. 103 (1998), 259-288.
  7. H. O. Kim, R. Y. Kim, and J. K. Lim, Local analysis of frame multiresolution analysis with a general dilation matrix, Bull. Austral. Math. Soc. 67 (2003), no. 2, 285-295.
  8. H. O. Kim, R. Y. Kim, and J. K. Lim, Internal structure of the multiresolution analyses defined by the unitary extension principle, J. Approx. Theory 154 (2008), no. 2, 140-160.
  9. H. O. Kim and J. K. Lim, On frame wavelets associated with frame multiresolution analysis, Appl. Comput. Harmon. Anal. 10 (2001), no. 1, 61-70.
  10. H. O. Kim and J. K. Lim, Applications of shiff-invariant space theory to some problems of multiresolution analysis of $L^2(R^d)$, in: D. Deng, D. Huang, R.-Q. Jia, W. Lin and J. Wang (Eds.), Studies in Advanced Mathematics 25: Wavelet Analysis and Applications, American Mathematical Society/International Press, Boston 2001, 183-191.
  11. J. K. Lim, Gramian analysis of multivariate frame multiresolution analyses, Bull. Austral. Math. Soc. 66 (2002), no. 2, 291-300.
  12. S. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2$(R), Trans. Amer. Math. Soc. 315 (1989), no. 1, 69-87.
  13. L. Mu, Z. Zhang, and P. Zhang, On the higher-dimensional wavelet frames, Appl. Comput. Harmon. Anal. 16 (2004), no. 1, 44-59.
  14. A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_{2}(R^{d})$, Canad. J. Math. 47 (1995), no. 5, 1051-1094.
  15. A. Ron and Z. Shen, Affine systems in $L_{2}(R^{d})$: the analysis of the analysis operator, J. Funct. Anal. 148 (1997), no. 2, 408-447.