• Kurt, Veli (Department of Mathematics Akdeniz University) ;
  • Cenkci, Mehmet (Department of Mathematics Akdeniz University)
  • Received : 2008.12.14
  • Published : 2010.05.31


In this paper, new q-analogs of Genocchi numbers and polynomials are defined. Some important arithmetic and combinatoric relations are given, in particular, connections with q-Bernoulli numbers and polynomials are obtained.


q-exponential functions;q-Genocchi numbers and polynomials;q-Bernoulli numbers and polynomials


  1. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
  2. M. Cenkci, M. Can, and V. Kurt, q-extensions of Genocchi numbers, J. Korean Math. Soc. 43 (2006), no. 1, 183-198.
  3. G. Gasper, Lecture notes for an introductory minicourse on q-series, arXiv.math.CA/9509223.
  4. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
  5. A. S. Hegazi and M. Mansour, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), no. 1, 9-18.
  6. L. C. Jang and T. Kim, q-Genocchi numbers and polynomials associated with fermionic p-adic invariant integrals on Zp, Abstr. Appl. Anal. 2008 (2008), Art. ID 232187, 8 pp. doi:10.1155/2008/232187.
  7. L. C. Jang, T. Kim, D. H. Lee, and D. W. Park, An application of polylogarithms in the analogue of Genocchi numbers, NNTDM 7 (2000), 66-70.
  8. V. Kac and P. Cheung, Quantum Calculus, Springer Verlag, New York, 2002.
  9. T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298.
  10. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), no. 2, 1458-1465.
  11. T. Kim, A note on p-adic q-integral on $Z_p$ associated with q-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 133-137.
  12. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27.
  13. T. Kim, A note on the q-Genocchi numbers and polynomials, J. Inequal. Appl. 2007 (2007), Art. ID 71452, 8 pp. doi:10.1155/2007/71452.
  14. T. Kim, On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15 (2008), no. 4, 481-486.
  15. T. Kim, Note on q-Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 1, 9-15.
  16. T. Kim, L.-C. Jang, and H.-K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141.
  17. T. Kim, M.-S. Kim, L.C. Jang, and S.-H. Rim, New q-Euler numbers and polynomials associated with p-adic q-integrals, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 243-252.
  18. T. H. Koornwinder, Special functions and q-commuting variables, Special functions, qseries and related topics (Toronto, ON, 1995), 131-166, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  19. B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 412-422.
  20. Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, q-Genocchi numbers and polynomials associated with q-Genocchi-type l-functions, Adv. Difference Equ. 2008 (2008), Art. ID 815750, 12 pp. doi:10.11555.2008/85750.
  21. A. De Sole and V. Kac, On integral representations of q-gamma and q-beta functions, arXiv:math QA/0302032.
  22. H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), no. 4, 375-380.

Cited by

  1. On the Barnes' Type Related to Multiple Genocchi Polynomials on vol.2012, 2012,
  2. q-Bernoulli polynomials and q-umbral calculus vol.57, pp.9, 2014,
  3. A research on the new polynomials involved with the central factorial numbers, Stirling numbers and others polynomials vol.2014, pp.1, 2014,
  4. Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind vol.217, pp.12, 2011,