DOI QR코드

DOI QR Code

A NEW APPROACH TO q-GENOCCHI NUMBERS AND POLYNOMIALS

  • Kurt, Veli (Department of Mathematics Akdeniz University) ;
  • Cenkci, Mehmet (Department of Mathematics Akdeniz University)
  • Received : 2008.12.14
  • Published : 2010.05.31

Abstract

In this paper, new q-analogs of Genocchi numbers and polynomials are defined. Some important arithmetic and combinatoric relations are given, in particular, connections with q-Bernoulli numbers and polynomials are obtained.

Keywords

q-exponential functions;q-Genocchi numbers and polynomials;q-Bernoulli numbers and polynomials

References

  1. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
  2. M. Cenkci, M. Can, and V. Kurt, q-extensions of Genocchi numbers, J. Korean Math. Soc. 43 (2006), no. 1, 183-198. https://doi.org/10.4134/JKMS.2006.43.1.183
  3. G. Gasper, Lecture notes for an introductory minicourse on q-series, arXiv.math.CA/9509223.
  4. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
  5. A. S. Hegazi and M. Mansour, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), no. 1, 9-18. https://doi.org/10.2991/jnmp.2006.13.1.2
  6. L. C. Jang and T. Kim, q-Genocchi numbers and polynomials associated with fermionic p-adic invariant integrals on Zp, Abstr. Appl. Anal. 2008 (2008), Art. ID 232187, 8 pp. doi:10.1155/2008/232187.
  7. L. C. Jang, T. Kim, D. H. Lee, and D. W. Park, An application of polylogarithms in the analogue of Genocchi numbers, NNTDM 7 (2000), 66-70.
  8. V. Kac and P. Cheung, Quantum Calculus, Springer Verlag, New York, 2002.
  9. T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298. https://doi.org/10.1134/S1061920806030058
  10. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), no. 2, 1458-1465. https://doi.org/10.1016/j.jmaa.2006.03.037
  11. T. Kim, A note on p-adic q-integral on $Z_p$ associated with q-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 133-137.
  12. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27. https://doi.org/10.2991/jnmp.2007.14.1.3
  13. T. Kim, A note on the q-Genocchi numbers and polynomials, J. Inequal. Appl. 2007 (2007), Art. ID 71452, 8 pp. doi:10.1155/2007/71452.
  14. T. Kim, On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15 (2008), no. 4, 481-486. https://doi.org/10.1134/S1061920808040055
  15. T. Kim, Note on q-Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 1, 9-15.
  16. T. Kim, L.-C. Jang, and H.-K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141. https://doi.org/10.3792/pjaa.77.139
  17. T. Kim, M.-S. Kim, L.C. Jang, and S.-H. Rim, New q-Euler numbers and polynomials associated with p-adic q-integrals, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 243-252.
  18. T. H. Koornwinder, Special functions and q-commuting variables, Special functions, qseries and related topics (Toronto, ON, 1995), 131-166, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  19. B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 412-422. https://doi.org/10.2991/jnmp.2005.12.s1.34
  20. Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, q-Genocchi numbers and polynomials associated with q-Genocchi-type l-functions, Adv. Difference Equ. 2008 (2008), Art. ID 815750, 12 pp. doi:10.11555.2008/85750.
  21. A. De Sole and V. Kac, On integral representations of q-gamma and q-beta functions, arXiv:math QA/0302032.
  22. H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), no. 4, 375-380. https://doi.org/10.1016/S0893-9659(04)90077-8

Cited by

  1. On the Barnes' Type Related to Multiple Genocchi Polynomials on vol.2012, 2012, https://doi.org/10.1155/2012/679495
  2. q-Bernoulli polynomials and q-umbral calculus vol.57, pp.9, 2014, https://doi.org/10.1007/s11425-014-4821-3
  3. A research on the new polynomials involved with the central factorial numbers, Stirling numbers and others polynomials vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-26
  4. Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind vol.217, pp.12, 2011, https://doi.org/10.1016/j.amc.2010.12.048