Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 47 Issue 3
- /
- Pages.593-610
- /
- 2010
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
MOTIVICITY OF THE MIXED HODGE STRUCTURE OF SOME DEGENERATIONS OF CURVES
- Chae, Hi-Joon (Department of Mathematics Education Hongik University) ;
- Jun, Byung-Heup (Department of Mathematics Konkuk University)
- Received : 2008.12.19
- Published : 2010.05.31
Abstract
We consider a degeneration of genus 2 curves, which is opposite to maximal degeneration in a sense. Such a degeneration of curves yields a variation of mixed Hodge structure with monodromy weight filtration. The mixed Hodge structure at each fibre, which is different from the limit mixed Hodge structure of Schmid and Steenbrink, can be realized as
Keywords
variation of mixed Hodge structure
File
References
- J. Carlson, The geometry of the extension class of a mixed Hodge structure, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 199-222, Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987.
- J. Carlson, S. Muller-Stach, and C. Peters, Period Mappings and Period Domains, Cambridge Studies in Advanced Mathematics, 85. Cambridge University Press, Cambridge, 2003.
- P. Deligne, Theorie de Hodge. II, Inst. Hautes Etudes Sci. Publ. Math. No. 40 (1971), 5-57.
- P. Deligne, Theorie de Hodge. III, Inst. Hautes Etudes Sci. Publ. Math. No. 44 (1974), 5-77.
- P. Deligne, La conjecture de Weil. II, Inst. Hautes Etudes Sci. Publ. Math. No. 52 (1980), 137-252.
- P. Deligne, Local behavior of Hodge structures at infinity, Mirror symmetry, II, 683-699, AMS/IP Stud. Adv. Math., 1, Amer. Math. Soc., Providence, RI, 1997.
- P. Griffiths and L. Tu, Asymptotic behavior of a variation of Hodge structure, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 63-74, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984.
- P. Griffiths and J. Harris, Princeples of Algebraic Geometry, Wiley, New York, 1978.
- L. Illusie, Autour du theoreme de monodromie locale, Asterisque Vol. 223 (1994), 9-58.
- M. Kontsevich and D. Zagier, Periods, Mathematics unlimited-2001 and beyond, 771-808, Springer, Berlin, 2001.
- W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319. https://doi.org/10.1007/BF01389674
- J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986.
- J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229-257. https://doi.org/10.1007/BF01403146
- J. Steenbrink and S. Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489-542. https://doi.org/10.1007/BF01388729
- S. Muller-Stach, A remark on height pairings, Algebraic cycles and Hodge theory (Torino, 1993), 253-259, Lecture Notes in Math., 1594, Springer, Berlin, 1994.