DOI QR코드

DOI QR Code

ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION

  • Kim, Jung-Ok (Department of Mathematics Education Andong National University) ;
  • Kwon, Ern-Gun (Department of Mathematics Education Andong National University)
  • Received : 2009.01.02
  • Published : 2010.05.31

Abstract

A holomorphic function F defined on the unit disc belongs to $A^{p,{\alpha}}$ (0 < p < $\infty$, 1 < ${\alpha}$ < $\infty$) if $\int\limits_U|F(z)|^p \frac{1}{1-|z|}(1+log)\frac{1}{1-|z|})^{-\alpha}$ dxdy < $\infty$. For boundedness of the composition operator defined by $C_{fg}=g{\circ}f$ mapping Blochs into $A^{p,{\alpha}$ the following (1) is a sufficient condition while (2) is a necessary condition. (1) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha}M_p(r,\lambda{\circ}f)^p\;dr$ < $\infty$ (2) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha+p}(1-r)^pM_p(r,f^#)^p\;dr$ < $\infty$.

Keywords

composition operator;Bloch space;weighted Bergman space

References

  1. P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970.
  2. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  3. E. G. Kwon, Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1473-1480. https://doi.org/10.1090/S0002-9939-96-03191-7
  4. E. G. Kwon, On analytic functions of Bergman BMO in the ball, Canad. Math. Bull. 42 (1999), no. 1, 97-103. https://doi.org/10.4153/CMB-1999-011-3
  5. E. G. Kwon and J. K. Lee, Norm of a composition operator on the Bloch space, Preprint.
  6. W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), no. 4, 591-606. https://doi.org/10.1007/BF01445229
  7. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1980.
  8. S. Yamashita, Hyperbolic Hardy classes and hyperbolically Dirichlet-finite functions, Hokkaido Math. J. 10 (1981), Special Issue, 709-722.