DOI QR코드

DOI QR Code

UNIT-REGULARITY AND STABLE RANGE ONE

  • Chen, Huanyin (Department of Mathematics Hangzhou Normal University)
  • Received : 2009.01.21
  • Published : 2010.05.31

Abstract

Let R be a ring, and let $\Psi$(R) be the ideal generated by the set {x $\in$R | 1 + sxt $\in$ R is unit-regular for all s, t $\in$ R}. We show that $\Psi$(R) has "radical-like" property. It is proven that $\Psi$(R) has stable range one. Thus, diagonal reduction of matrices over such ideal is reduced.

Keywords

unit-regularity;stable range one;diagonal reduction

References

  1. P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo, Diagonalization of matrices over regular rings, Linear Algebra Appl. 265 (1997), 147-163. https://doi.org/10.1016/S0024-3795(96)00596-4
  2. P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105-137. https://doi.org/10.1007/BF02780325
  3. B. Brown and N. H. Mccoy, The maximal regular ideal of a ring, Proc. Amer. Math. Soc. 1 (1950), 165-171. https://doi.org/10.2307/2031919
  4. K. R. Goodearl, Cancellation of low-rank vector bundles, Pacific J. Math. 113 (1984), no. 2, 289-302. https://doi.org/10.2140/pjm.1984.113.289
  5. K. R. Goodearl, von Neumann Regular Rings, Second edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.
  6. T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 3 (2004), no. 3, 301-343. https://doi.org/10.1142/S0219498804000897
  7. T. Y. Lam and W. Murray, Unit regular elements in corner rings, Bull. Hong Kong Math. Soc. 1 (1997), no. 1, 61-65.
  8. A. A. Tuganbaev, Rings Close to Regular, Mathematics and its Applications, 545. Kluwer Academic Publishers, Dordrecht, 2002.

Cited by

  1. Weak inverses of products — Cline’s formula meets Jacobson lemma 2017, https://doi.org/10.1142/S021949881850069X
  2. Jacobson’s Lemma via Gröbner-Shirshov Bases vol.24, pp.02, 2017, https://doi.org/10.1142/S1005386717000189
  3. Inner inverses and inner annihilators in rings vol.397, 2014, https://doi.org/10.1016/j.jalgebra.2013.08.023