Development of Bioreactor for Regenerative Medicine and Effect of Mechanical Stimuli on Mesenchymal Stem Cells in Polyurethane Scaffolds

바이오리액터 개발과 기계적 자극에 의한 중간엽 줄기세포의 영향에 관한 연구

  • 주민진 (연세대학교 기계공학부) ;
  • 전흥재 (연세대학교 기계공학부) ;
  • 정형진 (연세대학교 기계공학부) ;
  • 이창근 (연세대학교 의과대학 의과학과) ;
  • 허동녕 (경희대학교 치의학대학원 구강생물학과) ;
  • 권일근 (경희대학교 치의학대학원 구강생물학과) ;
  • 문성환 (연세대학교 의과대학 의과학과)
  • Received : 2009.02.10
  • Accepted : 2010.03.23
  • Published : 2010.06.01


It is well known that mesenchymal stem cell(MSCs) can be differentiated into fibroblasts, chondrocytes, and osteoblasts and that they develop into fibrous tissue, cartilage, or bone, as a result of mechanical stimulation. In this study, we developed a bioreactor system, which is composed of a reactor vessel that provides the required cell culture environment, an environment controlling chamber to control the media, a gas mixer, and a reactor motion control subsystem to apply mechanical stimuli to the cells. For the MSC culture, We used a poly-urethane (PU) scaffold, with a collagen coating to ensure improved cohesion ratio. Then, we transferred the cultivated MSCs in the PU scaffold, cultured the cells in the bioreactor system, and confirmed the proliferation, differentiation, and ossification processes, resulting from mechanical stimuli.


Grant : 기계적자극에 의한 성체줄기세포의 분화 모델 및 생체역학적 BIOREACTOR를 이용한 근골격계 COMPUTER AIDED TISSUE ENGINEERING

Supported by : 한국과학재단


  1. James, J. Yoo. and Lee, Il. Woo., 2002, Tissue Engineering and Regenerative Medicine, Koonja Publishing.
  2. Robert, P. Lanza, Robert Langer. and Joseph Vacanti., 2000, Principles of Tissue Engineering, Academic press.
  3. Pittenger, M. F. Mackay, A. M. Beck, S.C. Jaiswal, R. K. Douglas, R. and Mosca, J. D., 1999, “Mutilineage Potential of Adult Human Mesenchymal Stem Cell,” Science, Vol. 284, pp. 143-147.
  4. Bruder, S. P. Fink, D. J. and Caplan, A. I., 1994, “Mesenchymal Stem Cells in Bonedevelopment, Bone Repair, and Skeletal Regeneration Therapy,” J Cell Biochem, Vol. 56, pp. 283-294.
  5. Nugent-Derfus, G. E. Takara, J. K. O'Neill, S. B. Cahill, S. Görtz, T. Pong, Inoue H. Aneloski, N. M. Wang, W. W. Vega, K. I. Klein, T. J. Hsieh-Bonassera, N. D. Bae, W. C. Burke, J. D. Bugbee, W. D. and Sah R. L., 2007, “Continous Passive Motion Allpied to Whole Joints Stimulates Chondrocyte Biosynthesis of PRG4,” Osteoarthritis and Cartilage. Vol.15, pp. 566-574.
  6. Freshney, R. I., 1992, Animal Cell Culture-a Practical Approach, 2nd edi, IRL press, New york, pp.68-72
  7. Vunjak-Novakovic, G. Meinel, L. Altman, G. and Kaplan, D., 2005, “Bioreactor Cultivation of Osteochondral Grafts,” Orthodontics and Craniofacial Research, Vol. 8, No. 3, pp. 209-218.
  8. Kadilaya, S. Lo, H. and Leong, K. W., 1994, “Biodegradable Polymers and Synthetic Bone Graft in Bone Formation and Repair,” American Academy orthopaedic Surgeons Symposium, pp. 317-324.
  9. Gultekin, G. Atalay-Oral, C. Erkal, S. Sahin, F. Karastova, D. Tantekin-Ersolmaz, S. B. and Guner, F. S., 2008, “Fatty Acid-Based Polyurethane Films for Wound Dressing Applications,” J Mater Sci Mater Med, Vol. 20, No. 1, pp. 421-431.
  10. Vunjaknovakovic, G. Freed, L. E. Biron, R. J. and Langer, R., 1996, “Effects of Mixing on the Composition and Morphology of Tissue-Engineered Cartilage,” AIChE J, Vol. 42, pp. 850-860.
  11. Unsworth, B. R. and Lelkes, P. I., 1998, “Growing Tissues in Microgravity.Nat,” Med, Vol. 4, pp. 901-907.
  12. Jasmund, I. and Bader, A., 2002, “Bioreactor Developments for Tissue Engineering Applications by the Example of the Bioartificial Liver,” Adv Biochem Eng, Vol. 74, pp. 99-109.
  13. Wendt, D. Marsano, A. Jakob, M. Heberer, M. and Martin, I., 2003, “Oscillating Perfusion of Cell Suspensions Through Three-Dimensional Scaffolds Enhances Cell Seeding Efficiency and Uniformity,” Biotechnol, Vol. 84, pp. 205-214.
  14. Langelier, E. Rancourt, D. Bouchard, S. Lord, C. Stevens, P. P. Germain, L. and Auger, F. A., 1999, “Cyclic Traction Machine for Long-Term Culture of Fibroblast-Populated Collagen Gels,” Annals of Biomedical Engineering, Vol. 27, No. 1, pp. 67-72
  15. Gregory, H. A. Helen, H. Lu, R. L. Horan, Tara Calabro. Daniel Ryder. David, L. Kaplan. Peter Stark. Ivan Martin. John, C. R. and Grodana Vunfak- Novakovic., 2002, "Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain for Tissue Engineering,” Transaction of the ASME, Vol. 124, pp. 742-749
  16. Altman, G.H., Horan, R.L., Martin, I., Farhadi, J., Stark, P.R., Volloch, V., Richmond, J.C., Vunjak-Novakovic, G. and Kaplan, D.L., 2002, "Cell Differentiation by Mechanical Stress" FASEB J, Vol. 16, No. 2, pp. 270-272.
  17. Milan, J.L., Planell, J.A. and Lacroix, D., 2009, "Computational Modelling of the Mechanical Environment of Osteogenesis Within a Polylactic Acid-Calcium Phosphate Glass Scaffold," Biomaterials, Vol. 30, No. 25, pp.4219-4226.
  18. Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B. and Claes, L., 2005, "Tissue Engineering of Bone: Effects of Mechanical Strain on Osteoblastic Cells in Type I Collagen Matrices," Biomaterials, Vol. 26, No. 3, pp. 311-318.
  19. Isobe, M. Yamazaki, Y. Oida, S. I. Ishihara, K. Nakabayashi, N. and Amagasa, T., “Bone Morphogenetic Protein Encapsulated with a Biodegradable and Biocompatible Polymer,” Journal of Biomedical Materials Research, Vol. 32, No. 3, pp. 433-438.<433::AID-JBM17>3.0.CO;2-H

Cited by

  1. Experimental Study of Machining Process of Polymer Mold for Fabrication of Three-Dimensional Hydrogel Scaffold vol.37, pp.7, 2013,
  2. Experimental investigation on a hybrid manufacturing process of micro-scale mold for biomimetic intestinal villi’s scaffold vol.32, pp.9, 2018,