Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP)

  • Park, Jeong-Ho (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Yeo, Sang-Yeob (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Park, Jung-Ki (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science Engineering) ;
  • Lee, Yong-Min (Division of Applied Chemistry and Biotechnology, Hanbat National University)
  • Received : 2010.03.15
  • Accepted : 2010.03.29
  • Published : 2010.05.31


The plasticized polymer electrolytes based on polyvinylidene fluoride-co-hexafluoropropylene (P(VdF-co-HFP)), tetra (ethylene glycol) dimethyl ether (TEGDME), and lithium perchlorate ($LiClO_4$) are prepared for the lithium sulfur batteries by solution casting with a doctor-blade. The polymer electrolyte with EO : Li ratio of 16 : 1 shows the maximum ionic conductivity, $6.5\;{\times}\;10^{-4}\;S/cm$ at room temperature. To understand the effect of the salt concentration on the electrochemical performance, the polymer electrolytes are characterized using electrochemical impedance spectroscopy (EIS), infrared spectroscopy (IR), viscometer, and differential scanning calorimeter (DSC). The optimum concentration and mobility of the charge carriers could lead to enhance the utilization of sulfur active materials and the cyclability of the Li/S unit cell.


Grant : Core Lithium Secandary Battery Anode Materials for Next Generation Mobile Power Module

Supported by : MKE/IITA


  1. G. Eichinger and J. Besenhard, ‘High energy density lithium cells: part II. cathodes and complete cells’ J. Electroanal. Chem.,72, 1 (1976).
  2. R. D. Rauh, K. M. Abraham, G. F. Pearson, S. K. Surprenant, and S. B., Brummer, ‘A lithium/dissolved sulfur battery with an organic electrolyte’ J. Electrochem. Soc., 126, 523 (1979).
  3. H. Yamin and E. Peled, ‘Electrochemistry of a nonaqueous lithium/sulfur cell’ J. Power Sources, 9, 281 (1983).
  4. H. Yamin, J. Penciner, A. Gorenshtain, M. Elam, and E. Peled, ‘The electrochemical behavior of polysulfides in tetrahydrofuran’ J. Power Sources, 14, 129 (1985).
  5. H. Yamin, A. Gorenshtain, J. Penciner, Y. Sternberg, and E. Peled, ‘Lithium sulfur battery’ J. Electrochem. Soc., 135, 1045 (1988).
  6. M. -Y Chu, “Rechargeable positive electrodes” US Patent No. 5,814,420.
  7. D. Marmorstein, T. H. Yu, K. A. Striebel. F. R. McLarnon, J. Hou, and E. J. Chairns, ‘Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes’ J. Power Sources, 89, 219 (2000).
  8. F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G. B. Appetecchi, and B. Scrosati, ‘Synthesis and characterization of highly conducting gel electrolytes’ Electrochim. Acta, 39, 2187 (1994).
  9. D. Peramunage, D. M. Pasquarielli, and K. M. Abraham, ‘Polyacrylonitrile-based electrolytes with ternary solvent mixtures as plasticizers’ J. Electrochem. Soc., 142, 1789 (1995).
  10. Y. M. Lee, N. -S, Choi, J. H. Park, and J. -K. Park, ‘Electrochemical performance of lithium sulfur batteries with protected Li anodes’ J. Power Sources, 119, 964 (2003).
  11. I. I. Olsen and R. Koksband, ‘A temperature study of the ionic conductivity of a hybrid polymer electrolyte’ J. Electrochem. Soc., 143(2), 570 (1996).
  12. H. -T. Kim, Proc. of’ 01 Korean Institute of Chemical Engineering Fall Meeting, 7(2), 4658 (2001).

Cited by

  1. Preparation of carbon aerogel by ambient pressure drying and its application in lithium/sulfur battery vol.43, pp.1, 2013,
  2. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review vol.49, pp.90, 2013,