Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Received : 2010.10.30
  • Accepted : 2010.12.06
  • Published : 2010.12.31

Abstract

The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

References

  1. Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S. (2007) Interface Reconstruction with Least-Square Fit and Split Advection in Three-Dimensional Cartesian Geometry, J. Comput. Phys., 255(2), pp.2301-2319.
  2. Brackbill, J.U., Kothe, D.B., Zemach, C. (1992) A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 100(2), pp.335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  3. Gueyffier, D., Nadim, A., Li, J., Scardovelli, R., Zaleski, S. (1999) Volume of Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-dimensional Flows, J. Comput. Phys., 152, pp.423-456. https://doi.org/10.1006/jcph.1998.6168
  4. Harlow, F.H., Welch, J.E. (1965) Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Phys. Fluids, 8, pp.2182-2188. https://doi.org/10.1063/1.1761178
  5. Hirt, C.W., Nichols, B.D. (1981) Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 39, pp.201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  6. Hu, C., Kashiwagi, M. (2004) A CIP-based Method for Numerical Simulation of Violent Free-surface Flows, J. Mar. Sci. Technol., 9, pp.143-157. https://doi.org/10.1007/s00773-004-0180-z
  7. Khayyer, A., Gotoh, H., Shao, S.D. (2009) Enhanced Predictions of Wave Impact Pressure by Improved Incompressible SPH Methods, Applied Ocean Research, 31(2), pp.111-131. https://doi.org/10.1016/j.apor.2009.06.003
  8. Li, J. (1995) Calcul d'interface Affine par Morceaux (Piecewise Linear Interface Calculation), C. R. Acad. Sci. Paris, serie IIb, Paris, 320, pp.391-396.
  9. Martin, J.C., Moyce, W.J. (1952) An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane, Philos. Trans. R. Soc., A244, pp.312-324.
  10. Noh, W.F., Woodward, P. (1976) SLIC(Simple Line Interface Calculation), Proceeding of the fifth International Conference on Numerical Methods in Fluid Dynamics, 59, pp.330-340.
  11. Parker, B.J., Youngs, D.L. (1992) Two and Three Dimensional Eulerian Simulation of Fluid Flow with Material Interfaces, Technical Report, 01/92.
  12. Patankar, S.V., Spalding, D.B. (1972) A Calculation Procedure for Hear, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, 15(10), pp.1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  13. Rider, W.J., Kothe, B.D. (1998) Reconstruction Volume Tracking, J. Comput. Phys., 141, pp.112-152. https://doi.org/10.1006/jcph.1998.5906
  14. Scardovelli, R., Zaleski, S. (2003) Interface Reconstruction with Least-Square Fit and Split Eulerian-Lagrangian Advection, Int. J. Numer. Meth. Fluids, 41, pp.251-274. https://doi.org/10.1002/fld.431
  15. Wei, Y., Shu-hong, L., Yu-lin, W. (2010) An Unsplit Lagrangian Advection Schtie for Volume of Fluid Method, Journal of Hydrodynamics, 22(1), pp.73-80. https://doi.org/10.1016/S1001-6058(09)60030-5
  16. Youngs, D.L. (1986) Time-dependent Multi-Material Flow with Large Fluid Distribution, Numerical Method for Fluid Dynamics, pp.187-221.
  17. Kleefsman, K.M.T, Fekken, G., Veldman, A.E.P, Iwanowski, B., Buchner, B. (2005) A Volumeof-Fluid Based Simulation Method for Wave Impact Problems, J. Comput. Phys., 206, pp.363-393. https://doi.org/10.1016/j.jcp.2004.12.007