대상공사의 특성요인 적합도 분석에 의한
공공부문 ‘CM at Risk 방식’ 도입의 타당성 분석

Feasibility Analysis of Introducing CM at Risk Delivery Method to the
Korean Public Construction Industry by Analyzing Attributes of the Projects

고 민혁* 김 예성** 권 순욱*** 진 상윤****
Koh, Min-Hyeok Kim, Yea-Sang Kwon, Soon-Wook Chin, Sang-Yoon

요 약

건설공사의 성공을 위해서는 고도의 사업관리 능력이 필수적이고 요구되며, 이를 해결하기 위한 방안의 하나로 다양한 CM 발주방식의 필요성이 부각되고 있다. 이와 같은 맥락에서 최근 들어 ‘CM at Risk 방식’의 도입이 정부 차원에서 모색되고 있으나 이를 위해서는 그것이 국내 건설 산업과 도입 대상이 되는 공공건설공사의 특성에 적합한지, 또 재도 도입 시 본연의 장점에 대한 살릴 수 있는 가에 대한 분석이 선행되어야 한다. 따라서 본 연구에서는 ‘CM at Risk 방식’ 도입 전, 그 대상공사의 특성 및 각 공공공사 유형별 사업특성과의 적합도를 분석하여 본 발주방식 도입의 타당성을 분석하였다. 이를 위해 공공시설물의 유형을 9가지로 구분하고 ‘CM at Risk 방식’의 일반적인 특성과 ‘CM at Risk–GMP 방식’, ‘CM at Risk 방식–설비정산 방식’에 대한 특성요인 15가지를 도출하였으며, CM업체의 전문기술을 대상으로 설문조사를 실시하여 각 유형에 대한 적합도를 분석하였다. 그 결과 설문에서 응답한 CM전문가들은 ‘CM at Risk 방식’의 도입에 부정적인 인식을 가지고 있지만, 공공공사에 대한 ‘CM at Risk 방식’의 적용은 공기단축에 대한 필요성 부재나 발주자의 제한된 재정능력 등, 기존 국내 공공공사의 특성으로 인하여 극히 제한적임을 것으로 분석되었다.

키워드: CM at Risk 방식, CM at Risk–GMP 방식, CM at Risk–설비정산 방식, 발주방식의 특성요인

1. 서론

1.1 연구의 배경 및 목적

현재의 건설산업은 방주자의 다양한 요구, 제한적인 예산과 공가, 경쟁의 심화 등으로 인해 고도의 사업관리 능력이 필수적이고 요구되고 있는 실정이며, 이로 인해 민간 발주자나 지방자치단체 등 사업관리 능력이 요구한 발주자에게 있어 사업관리능력은 보완하기 위한 새로운 다양한 발주방식의 필요성이 증가하고 있다.

최근 들어 이러한 요구와 필요성을 해소하기 위한 발안의 하나로 다양한 CM 발주방식의 필요성이 부각되고 있으며, 이 중 ‘CM at Risk 방식’은 공무사와 공사기간의 효율적 운영 측면에서 유리하고 CM분야의 국제경쟁력 확보와 시공부문의 생산성 향상에 도움을 줄 수 있는 발주방식으로 기대되고 있다.

그러나 현재 건설산업에 적용하기 위하여 법적, 제도적인 차원에서 새로운 발주방식에 대해 구체적으로 논의가 병행되지 못하고 있는 것에 그 한계가 있으며, 이미 해외 선진국에서 검증된

* 일반환, 성균관대학교 건설환경시스템공학과, 석사과정, mindirfree@skku.edu
** 충원학원, 성균관대학교 건축공학과 교수, 공학박사(교신자), yskim@skku.edu
*** 중앙학원, 성균관대학교 건축공학과 조교수, 공학박사, awkwon@skku.edu
**** 중앙학원, 성균관대학교 건축공학과 부교수, 공학박사, schin@skku.edu
방식이라 하여도 제도도입에 앞서 국내 건설 산업과 적용대상이 되는 건설공사의 특성에 적합할까, 또 제도 도입 시 그 방식이 가지고 있는 본연의 장점에 최대한 살릴 수 있는 가를 먼저 분석 해보아야 한다. 최적의 발주방식 선정은 기술적 요인들 못지않게 건설사업의 성공에 큰 영향을 미치기 때문이다.

대한민국의 최근의 건축 업계는 'CM at Risk 발주방식'의 고려부분 도입 문제가 역시 예외가 될 수 없으며, 이에 본 연구에서는 'CM at Risk 발주방식'의 도입 이전에 본 발주방식의 적용대상이 되는 건설공사의 특성과 각 공공공사 유형별 사업특성과의 적합도를 분석하여 제도 도입의 타당성을 분석하고자 한다.

1.2 연구의 범위 및 방법

본 연구에서는 논의하고 있는 'CM at Risk 방식의 적용대상은 관련 제도와 법에 의해 적합적인 영향을 받는 공공공사로 한정하였고, 그 중 건축물능의 시설물 유형은 공공주택, 관공서 및 공공 오피스빌딩, 학교 및 교육시설, 병원 및 복지시설로, 토후 부분의 시설물은 도로 및 교량, 항만 및 공항, 철도 및 체육, 방전 및 소전시설, 등으로 구분하였다. 현재 새로운 발주방식을 국내 건설산업에 적용하기 위한 법/제도 개선 문제와 관련해서는 아직 미흡한 점들이 내재되어 있어 그에 대한 내용은 본 연구의 범위에서 배제하며 각 공공공사 유형별 사업특성과의 적합도를 분석, 본 발주방식 도입이 타당하지 않음을 살펴보고자 한다.

또한, 'CM at Risk 방식' 도입의 성과가 적용대상 공공사의 특성에 얼마나 잘 부합하고 발주자의 목표를 달성시킬 수 있는가에 달려있다고 보고, 우선 기존분야고찰을 통하여 'CM at Risk 방식' 대상공사의 일반적인 특성과 'CM at Risk 방식'의 세부 유형이라 할 수 있는 'CM at Risk-GMP 방식 및 'CM at Risk-설비비용(Cost Reimbursable) 방식의 특성요인을 도출하였으며, 이를 바탕으로 앞서 구분한 각 유형의 공공공사가 도출된 특성에 얼마나 부합하는 가를 묻는 설문조사를 실시하였다. 이 때 CM방식에 대한 인식이 시장, 설계 및 엔지니어링, 그리고 CM업계에 복잡할 수 있고 CM에 대한 지식이나 경험이 없는 자들을 대상으로 설문조사를 실시할 경우 결과가 왜곡될 우려가 있으므로 설문조사는 CM업 특성에 대해 이해도가 높은 국내 CM회사의 설문 전문가들로 행정하였다.

마지막으로 설문한 설문지는 통계 프로그램인 SPSS12.0을 이용해 분석하였으며 이를 바탕으로 각 공공공사 유형별 'CM at Risk 방식' 도입의 타당성과 시사점을 도출, 제시하였다.

2. 예비적 고찰

2.1 기존연구고찰

'CM at Risk 방식'의 도입이 논의되면서 이와 관련된 많은 논문과 연구가 발표되었는데 그 내용을 살펴보면, 'CM at Risk'가 활성화 되어왔던 해외건설시장 특히, 미국건설시장에 대한 현황 조사를 살펴보면 국내건설시장의 도입 타당성 및 활성화 여부를 분석하거나 제도 도입을 위한 정책적 방향을 제시하는 연구들이 주를 이루고 있었다. 그러나 공사유형별 특성 요 인들에 의한 제도의 도입 적합성 여부를 통해 실제 공사 프로젝트의 적용 측면에서 'CM at Risk 방식' 도입의 타당성을 분석, 제시하고 있는 연구는 미흡한 것으로 조사되었으며, 관련 연구 들에 대한 주요 내용은 아래의 표 1과 같다.

표 1. CM at Risk방식 관련 연구문헌 조사

<table>
<thead>
<tr>
<th>구분</th>
<th>재료</th>
<th>주요 연구내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>국내 도임 및 활성화 방안</td>
<td>신성용 외 2인 (2003)</td>
<td>국내 도입을 통해 국내 CM at Risk 도입을 위한 제도변革 방안 제시</td>
</tr>
<tr>
<td>공공공사의 CM at Risk 방식 적용</td>
<td>최규수 외 2인 (2003)</td>
<td>공공부문의 CM at Risk 방식 적용과 제도변革 방안 제시</td>
</tr>
<tr>
<td>미국 CM at Risk 방식</td>
<td>장영기 (2006)</td>
<td>미국CM단지 건설의 CM at Risk 방법과, 사용설명, 다양한 적용방식과의 비교를 통해 CM at Risk 방식을 조사</td>
</tr>
<tr>
<td>발주차 중의 CM at Risk 도입</td>
<td>김재영 (2005)</td>
<td>발주차 중의 CM at Risk 도입에 대한 체계적 분석을 통한 건설산업의 주요 공공도입 방안 구현 및 중점arih과의 조사 전문가들과의 조사</td>
</tr>
<tr>
<td>공공공사의 CM at Risk 도입 방식</td>
<td>홍성영 외 2인 (2001)</td>
<td>CM at Risk 도입을 통한 공공도입 방안과 제도변革 방안 제시</td>
</tr>
</tbody>
</table>

2.2 Construction Management(CM)방식의 유형

CM방식은 크게 건설사업관리자(이하 CM)가 용역자에 의해서에서 발주자에게 전문적인 서비스를 제공하는 'CM for Fee 방식'과 시공 이전 단계에서의 예형에 해당하는 서비스를 제공하지만 시공단계에서는 건축자의 역할을 겸하는 'CM at Risk 방식'의 형태로 크게 구분되며, 타 공사참여자와의 관계 및 공사 비급여방식 등에 따라 여러 가지 변형된 형태로 운용되고 있다. 그 대표적인 세부적인 유형은 다음과 같다.

2.2.1 CM for Fee 방식의 유형

(1) 다양한계약 기반 CM for Fee 방식
발주자가 직접 대행사의 시공자를 또는 전문건설업체들과 계약을 통해 공사를 수행하는 한편, 공사 관리에 전문성을 가진 CM을 발주자의 대행인으로서 프로젝트에 참여하는 방식이다.
(2) 원시도급 기반 CM for Fee 방식
기존 원도급자와 하도급자로 구성된 계약체계에 CM을 참여 시점으로써 전문적인 공사 관리 서비스를 확보하는 한편, 대행사의 시공자를 관리해야 하는 발주자의 리스크를 기존의 일반적인 공사계약체계에서처럼 원도급자가 부담하도록 하는 방식이다.

2.2 CM at Risk 방식의 유형
(1) CM at Risk-GMP 방식
CM이 설계단계 또는 그 이전 단계에 프로젝트에 참여할 경우 설계가 완성되지 않은 상태이므로 시공분부에 대한 공사비용을 확정적으로 예측하기 어렵게 된다. 따라서 CM이 그간의 경험과 전문성을 통해 '최대공사비 보증가격(Guaranteed Maximum Price: GMP)'을 제시하고 공사약관에 공사비용이 이 가격을 초과하게 되면 CM이 책임을 지는 방식이다.
(2) CM at Risk-설비장비방식
GMP 방식과 같이 초기에 공사비용을 예측하기 어려움에도 불구하고 공사비용 가능성을 최대한의 수호하려 하면서 시공자로서의 CM의 최대한의 수호를 높임으로서 시공단계의 비용을 실비정산 방식(Cost Reimbursable)으로 지급하게끔 계약하는 것을 말한다. 발주자 입장에서 공사비용이 비용을 사용하게 되면서, 특히 설계가 완성되지 않은 상태에서 계속 재도무를 적용할 때 효과적이다.

3. 'CM at Risk 방식' 대상공사의 특성
위에서 정의한 여러 CM 방식의 특성을 살펴보면 같은 CM 방식이라 하면도, 'CM for Fee'와 'CM at Risk' 간에, 또는 같은 유형의 방식이라도 세부적인 운영방식과 대상공사의 특성에 따라 공통점과 차이점이 존재함을 알 수 있다. 우선 'CM at Risk 방식'은 해당 사업에 전문적인 시공관리 기술이 필수적이고 발주자가 그러한 능력을 갖추고 있지 못하는 경우, CM의 참여가 필요하다는 점에서는 'CM for Fee 방식'과 그 성격이 대동다다.
그러나 'CM for Fee 방식'과 비교할 때 'CM at Risk 방식'은 시공자 선정에 필요한 입·날찰 절차를 간소화할 수 있고, 시공에 대한 책임은 CM이 부담하게 되므로 발주자의 리스크를 경감시킬 수 있는 방법이다. 또한 시공자로서의 CM이 공사 초기 단계에 참여하는 것이 시공자의 경험과 노하우가 다른 시기에 반영될 수 있고, 박스트 브랜드 방식을 보다 적극적으로 적용할 수 있으며, 따라서 공기단축의 기회를 한층 높일 수 있다.

표 2. 'CM at Risk 방식'에 적합한 대상공사의 특성 요인

<table>
<thead>
<tr>
<th>CM at Risk 방식 적용 대상공사의 일반적 특성</th>
<th>CM at Risk 방식 적용 대상공사의 특성 요인</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>2-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>2-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>3-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>3-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>4-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>4-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>5-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>5-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>6-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>6-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>7-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>7-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>8-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
<tr>
<td>8-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
<td>9-1 CM의 실적과 경력, 주관된 사례의 수달,</td>
</tr>
</tbody>
</table>

이와 같이 CM 방식간의 특성을 비교해볼 때, 발주자는 어떤 방식을 선택하는 것이 가장 최선의 방법인지를 가능성을 가질 수 있다. 예를 들어, 발주자가 공사분야에 대한 경험이 풍부하여 CM을 따로 고용한 필요가 없다면, 전체적인 설계·시공분야발주 방식'에 뛰어들어 그들이 요구하는 것이 완화된 선택일 것이며, CM의 참여가 필요하지만도 설계와 시공주체를 따로 분할할 필요가 없다고 무리하게 박스트 방식 방식을 적용하여 공기단축을 할 필요가 없다면 발주자는 그자 'CM at Risk 방식'을 선택할 것이며 'CM for Fee 방식'을 선택하는 것이 유리하다.

한편 'CM at Risk-GMP 방식'과 'CM at Risk-설비장비방식 간에도 차이점을 발견할 수 있는데, 가장 대표적인 차이점은 발주자가 공사예산에 대한 여유를 확보하고 있는가에 여부가 달라질 수 있다. 즉, GMP 방식은 공사비용 상한선을 제한함으로써 공기단축의 필요성이 높음에도 불구하고 발주자가 공사비용에 대한 리스크를 어느 정도 제어하기 위해 효과적으로 해소가 된다. 따라서 GMP를 실현할 시기에는 공사예산에 대한 여유가 가능하여도 사업시공이 시작되며 GMP를 초과하지 않게 위해 적절한 설계변경은 피하여야 한다. 발주의 실현상관관계는 공사비용 증가를 상쇄하고 공기단축의 목표를 달 때 가장 적합하다. 그러므로 발주자의 재정능력이 우선되어야 하고 발주자의 주도의 설계변 경능력이 큰 경우 유리하다.

이러한 개념 하에서 본 연구에서는 'CM at Risk 방식'이 도입될 경우 그 대가이며 공사관리의 특성과 본 발주방식 관리가 적합도를 판단하기 위해 'CM at Risk 방식'에 적합한 대
상공사의 대표적인 특성은 여러 문헌조사를 통해 표 2와 같이 도출하였다.

4. 공공공사 유형별 'CM at Risk 방식' 도입 타당성 분석

4.1 공공공사 건축 및 토목부문의 분류

특정 공사에 어떤 발주방식이 가장 적합한가를 판단하기 위해서는 해당 공사의 유형과 주요한 조건을 분석하는 것이 핵심적이다. 그러나 본 연구의 목적은 'CM at Risk 방식'이 공공부문에 도입되었을 때, 연계의 기대효과를 얻을 수 있는 가를 판단하는 것이므로 가장 대표적인 공공공사의 유형을 분류하고 각 유형에 대해 위치에서 설정한 'CM at Risk 방식' 적용대상 공사의 특성이 분석하는 가를 분석하였다.

 이를 위해 우선 통계청이 발표한 공로추경과 발주금액 실적을 발표할 때 기준을 삼은 분류방식을 살펴본 결과, 공공공사의 시설물 유형은 공정별로 크게 건축과 공사로 5개, 토목부문 11가지로 구분될 수 있었다. 그러나 이 모든 유형과 세부 종류의 시설물 중에 대해 'CM at Risk 방식' 적용 가능성을 분석하는 것은 큰 의미가 없다고 판단하여, 본 연구에서는 1998~2007년 10년간 공공공사 종류별 발주건수와 발주금액을 비교하고 각 유형의 특징을 분석하여 건축, 토목공사를 각각 4, 5가지 유형의 시설물로 구분하였다.

표 3. 건축부문 유형별 공사 종류

<table>
<thead>
<tr>
<th>유형</th>
<th>종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 주택</td>
<td>이동, 단일주택, 공동주택, 주택단위, 등</td>
</tr>
<tr>
<td>2) 사무용</td>
<td>사무용설계, 오피스, 주차, 공용</td>
</tr>
<tr>
<td>3) 공공</td>
<td>공공부문, 공공기능, 공공부분, 공공용</td>
</tr>
<tr>
<td>4) 관공서</td>
<td>공공부문, 공공기능, 공공부분, 공공용</td>
</tr>
<tr>
<td>5) 기타</td>
<td>철도, 철도공사, 철도공사, 공공용</td>
</tr>
</tbody>
</table>

번지 공공공사 건축부문에서 주택과 관공서는 전체 발주의 60%이상, 전체 발주건수의 70%이상을 차지하므로, 주택과 관공서를 공공 건축부문의 대표적인 시설물 유형으로 규정하였다. 단, 주택은 공공부문에서의 대부분을 차지하는 공동주택으로, 관공서는 표 3을 참조하여 관공서 및 공동오피스 시설, 학교 및 교육시설, 병원 및 복지시설로 해당 시설물을 유형을 제정하였다.

표 4. 토목부문 유형별 공사 종류

<table>
<thead>
<tr>
<th>유형</th>
<th>종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 지하</td>
<td>지하전용, 지하공사, 지하공사, 관공사 등</td>
</tr>
<tr>
<td>2) 공공</td>
<td>공공기능, 공공기능, 공공기능, 공공기능</td>
</tr>
<tr>
<td>3) 도로</td>
<td>도로, 도로, 도로, 도로</td>
</tr>
<tr>
<td>4) 체육</td>
<td>체육, 체육, 체육, 체육</td>
</tr>
<tr>
<td>5) 철도</td>
<td>철도, 철도, 철도, 철도</td>
</tr>
<tr>
<td>6) 강</td>
<td>강, 강, 강, 강</td>
</tr>
<tr>
<td>7) 민간</td>
<td>민간, 민간, 민간, 민간</td>
</tr>
<tr>
<td>8) 도로</td>
<td>도로, 도로, 도로, 도로</td>
</tr>
<tr>
<td>9) 강</td>
<td>강, 강, 강, 강</td>
</tr>
<tr>
<td>10) 기계설계</td>
<td>기계설계, 기계설계, 기계설계, 기계설계</td>
</tr>
<tr>
<td>11) 기기</td>
<td>기기, 기기, 기기, 기기</td>
</tr>
</tbody>
</table>

그림 1. 1998~2007년 공공공사 건축부문 발주건수 및 발주금액

공공공사 토목부문에서 전체 발주건수와 발주금액을 살펴보면 살펴보니 공사가 70%이상을 차지하는데, 이중 CM방식 적용의 가능성이 가장 높으므로 판단되는 상하수도와 도시조성 공사 를 제외하고 도로, 건축, 학교 및 교육, 철도 및 궁도 그리고 반전 및 건축시설을 토목부문 대상 시설물 유형으로 선정하였다. 상하수도 및 도시조성공사를 배제한 이유는 설비 및 배관공사로 이루어진 전문가의 경우, 실제 CM for Fee 방식에서도 적용례가 극히 제한적이며 공공의 특성상 CM의 역할은 한계가 있다고 보았으며, 후자는 특정 시설들이 설치되기보다 조성공사, 농공단지 및 공단단지 조성공사가 주로 이루어져 기본적으로 CM방식에 적합하지 않고 판단하기 때문이다.

반면, 민 공사는 현재 건설기술관리법 상 CM 적용가능 대상공 사로 명시되어있는 등, 기술력과 전문성을 필요로 하는 공사의
특성으로 연구범위에 추가하였다.

따라서 본 연구에서 'CM at Risk 방식'에 대한 타당성을 조사하는 공공공사의 건축·토목부문의 범위를 정리하면 아래의 표 5와 같다.

<table>
<thead>
<tr>
<th>부문</th>
<th>공사유형</th>
</tr>
</thead>
</table>
| 건축부문 | ① 공사주계약공공부
 | ② 공사관계 및 공공관리시스템
 | ③ 학교 및 교육시설
 | ④ 병원 및 복지시설 |
| 토목부문 | ① 도로 및 교량
 | ② 청사 및 공장
 | ③ 병원 및 복지시설
 | ④ 병원 및 복지시설 |

4.2 설문개요 및 조사방법

설문조사는 현재 국내에서 CM사업에 적극적으로 참여하고 있는 10개 CM회사를 대상으로 총 40명의 전문가에게 2008년 11월 10일부터 11월 28일까지 약 3주간에 걸쳐 우편발송과 직접방문을 통해 실시하였다. 설문 응답자의 일반적 특성에 관한 반도 분석 결과는 아래의 표 6과 같다.

<table>
<thead>
<tr>
<th>변수</th>
<th>응답률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>100.0</td>
</tr>
<tr>
<td>금융부서</td>
<td></td>
</tr>
<tr>
<td>CM사부</td>
<td>21</td>
</tr>
<tr>
<td>CM관련부</td>
<td></td>
</tr>
<tr>
<td>CM기술부</td>
<td></td>
</tr>
<tr>
<td>4년 이하</td>
<td>8</td>
</tr>
<tr>
<td>4~8년 미만</td>
<td>4</td>
</tr>
<tr>
<td>8~12년 미만</td>
<td>3</td>
</tr>
<tr>
<td>12~16년 미만</td>
<td>2</td>
</tr>
<tr>
<td>16~20년 미만</td>
<td>3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>20</td>
</tr>
</tbody>
</table>

설문의 구성은 표 5에서 보는 바와 같이 건축과 토목부문 중 9개 시설물 유형 각각에 대해 표 2에서 규정한 'CM at Risk 방식' 사용대상 공사의 특성을 제시하고 시설물 유형별로 각 특성의 적합도를 10점 척도로 담도록 하였다. 예를 들어, 건축부문의 '공공무자 공공부품 공사'에서 '프로젝트의 성공적 수행을 위해 전문적인 사업관리 기능이 필수적이다'라는 특성에 대해 응답자가 '매우 부적절'이라 생각할 때는 1점, '매우 적절'일 때 10점으로 평가하게 된다. 수집된 데이터는 SPSS12.0을 이용하여 분석하였으며, 한정된 설문응답자 대상으로 문항별 평가를 실시하였기에 때문에 응답자의 소속 또는 경력별로 통계적 의미를 갖는 차이점이 크게 발견되지 않았다. 본 연구에서는 분석수단을 통해 변수간의 상관성을 분석하기보다는 전문가들의 견해를 종합한 후 평균분석 결과를 토대로 시사점을 제시하였다.

4.3 'CM at Risk 방식' 적용 대상공사의 특성요인별 설문조사 분석결과

4.3.1 'CM at Risk 방식' 적용 대상공사의 일반적 특성에 대한 분석결과

본 설문조사는 'CM at Risk 방식'이 'CM for Fee 방식'과 공동적인 특성을 지니고 있으나 각 유형별 시설물 공사에 'CM at Risk 방식'이 적용될 경우 'CM for Fee 방식'의 차이점이 도출하기 어렵고 각 'CM at Risk 방식'의 전반적인 특성에 비추어 볼 때 각 유형별 시설물에 본 설문조사가 적합한 것인지에 대한 평가로서, 표 2에서 규정한 8개 특성요인에 대한 설문조사결과에 어려움이 없다.

(1) 프로젝트의 성공적 수행을 위한 전문적인 사업관리기능의 필요성

본 특성요인에 대하여 가장 높게 평가된 시설물 유형은 '항만 및 공항 시설(8.61점)'이었으며, 그 외에 '발전 및 수력 시설(8.57), '병원 및 복지시설(8.15)' 등이 높게 평가되었다. 반면 가장 낮게 평가된 것은 '공동주택(6.91점)'이 '도로 및 교량

![그림 3. 시설물별 사업관리 기능 요구 설문 결과](image-url)
(7.27)으로 비교적 단순, 반복적인 사업에서 전문적인 사업관리 기구의 필요성이 퇴어지는 것으로 조사되었다. 이 요인에 대해서는 평균점수가 가장 높게 조사되었는데(7.79), 특히 높은 점수를 받은 대상들에 대해 사업관리 기구가 필요하다는 인식을 보여주고 있는 것으로 해석할 수 있다.

(2) 프로젝트에 대한 발주자의 사업관리 능력 부족

본 연구에 대하여 가장 높은 점수를 보인 것은 `방문 및 복지시설(7.23)`과 `박물관 및 오피스(7.05)` 등이었으며, 가장 낮게 평가된 것은 `도로 및 교량(5.48)`, `공동주택(5.83)` 등이었다. 그러므로 여기서 의외하리한 것은 점수가 낮은수록 발주기관이 프로젝트에 필요한 사업관리 능력을 확보하고 있음을 의미하며 상대적으로 CM 방식의 적용이 요구되는 시설물들은 높은 점수 뿐만 아니라 시설물 유형이 있는 것이다. 그러나 상대적으로 높은 점수를 얻은 시설물 유형이 높다 하여도 불구하고 전체 평균은 5.96점으로 본 설문조사의 응답자들은 공공부문의 발주자들이 특수한 과제를 제외하고 어느 정도 수준의 사업 관리 능력을 보유하고 있는 것으로 평가하였으나 발주자의 사업관리능력 관점에서는 CM 방식 도입의 필요성을 크게 느끼지 못하는 것으로 설명할 수 있다.

이러한 점을 고려할 때 프로젝트 운영과정에서 발주자의 사업관리 능력이 요구되는 결과로 해석할 수 있다.

(3) 프로젝트 운영과 관련된 조정, 통합, 의사결정 등에 대한 발주자의 위험

이 특성요인에 대해서는 `행안 및 공항시설(7.42)`가 가장 높게 평가되었고 `공동주택(5.57)`, `도로 및 교량(5.79)`, 학교 및 교육시설(5.85)`이 낮게 평가되었으며 나머지 시설유형은 6점대를 범위를 기록하면서 큰 차이를 보이지 않았다. 또한 본 특성요인에 대해서도 평균 점수가 6.04로 10점 척도에서 중간을 약간 상회하는 결과가 얻어졌으며 설문조사의 응답자들은 `행안 및 공항시설`이나 특수한 상황을 제외한 나머지 유형의 시설물에에 프로젝트의 조정, 통합, 의사결정 등에 대한 발주자의 위협이 큰 문제가 되지 않을 것으로 평가하였음을 알 수 있다.

(4) 프로젝트 전 단계에 걸친 일원화된 관리 및 연속성유지의 필요성

프로젝트의 일원화된 관리와 연속성 유지에 대해서는 `항만 및 공항시설(8.64)`가 가장 높게 평가되었고, `도로 및 교량(7.45)`가 가장 낮게 평가되었다. 그러나 9개 유형에 대한 평균점을 수가 비교적 낮고(7.63), 편차가 상대적으로 낮아(표준편차:0.385), CM방식 적용에 대한 필요성으로서의 결과라고보다 모든 유형의 과제에 일원화된 관리 및 연속성 유지에 대한 개선이 필요함을 제한적으로도 해석할 수 있다.
본 요인에 대해서도 가장 높게 평가된 시설물 유형은 '항만 및 공항 시설(8.21)'인 것으로 나타났고, 발달 및 충전시설(8.03) 역시 높게 평가되었다. 반면 가장 평가선수가 낮은 유형은 '학교 및 교육시설(6.80)'과 '공동주택(6.95)'으로 단순 번복적인 시설 서비스에서는 상대적으로 프로젝트 초기단계에서부터 사공사의 경험과 노하우의 필요성이 뛰어지는 것으로 나타났다.

(6) 설계업무와 시공업무 간 원활한 의사교환과 협조체계의 필요성
이 요인은 평균이 7.74점으로 앞서 '전문적인 사업관리 기능의 필요성' 다음으로 높은 점수가 부여된 요인으로, 특히 높게 평가된 유형은 '항만 및 공항 시설(8.45)'이었으며 가장 낮은 유형은 유형의 공사는 '도로 및 교량(7.47)'이었다. 그러나 전체 점수의 반차가 작아(표준편차:0.352), 이 요인에 대한 분석결과는 사업에 이 용유형이 반영되었다고 보다 설계업무와 시공업무의 연관성이 모든 유형에 필수적이라는 인식이 반영된 것으로 판단할 수 있다.

![그림 8. 설계업무와 시공업무의 연관성 분석 결과](image)

(7) 공사참여자간 클레임 및 분쟁 가능성 증대
본 요인에 대해서는 '항만 및 공항 시설(7.39)'과 '병원 및 복지시설(7.35)'이 근접한 점수로 높게 평가되었으며 가장 낮은 것은 '학교 및 교육시설(6.10)'이었다. 특정적인 것은 전자전과 두 가지 시설유형을 제외하고는 모두 6점대 점수를 보인다는 점으로,

![그림 9. 공사참여자간 클레임 및 분쟁 가능성 분석 결과](image)

응답차에 국내 공공건설공사에서 공사참여자간의 클레임 및 분쟁의 가능성에 대한 인식이 높지 않다고 인식하고 있음을 알 수 있었다. 이는 클레임과 분쟁해결을 위한 CM의 기능에 대해서도 필요성이 크지 못하지 않다는 의미로도 해석할 수 있다.

(8) 파스트 트랙방식 적용을 통한 공기단축의 필요성
파스트 트랙을 적용한 공기단축의 필요성에 대해서는 '발전 및 증전시설(6.53)'과 '항만 및 공항 시설(6.36)'과 '병원(6.10)' 등이 높게 평가되었지만 이 점수는 유용한 요인들의 점수와 비교할 때 상대적으로 낮은 점수로 다소 아쉬운 점을 사례한 것에 대한 평가에서는 모두 5점대에 머물고 있는 것을 발견할 수 있었다. 이러한 결과는 10점 척도로 기준으로 볼 때 '분석을 약간 상회하는 수준으로 공기단축의 필요성이 공공건설공사의 최우선 목표가 아님을 알 수 있음은 의미하는 것이다.

![그림 10. 파스트 트랙방식 적용을 통한 공기단축 필요성 여부에 대한 설문 결과](image)

이상에서 도출된 결과를 종합해보면 공공공사의 경우 특히 전문적인 사업관리 기능의 필요성과 프로젝트 전단계 절차 일관성 관리 및 연속성 유지, 설계업무와 시공업무간의 원활한 의사교환과 협조체계 등이 있어 높은 평균값을 보이고 표준편차를 보며 모든 유형의 공사에 공히 필요한 것으로 인식되고 있음을 알 수 있었다.

따라서 'CM at Risk 방식을 적용할 경우, 이에 대한 대책를 채택키는데 어느 정도 도움이 될 것이라 평가할 수 있다. 반면, 'CM at Risk 방식의 가장 큰 장점이라 할 수 있는 빠른 트랙을 적용한 공기단축의 필요성에 대해서는 상대적으로 점수가 낮게 나타났다. 따라서 이를 제외한 대부분의 특성은 'CM for Fee'나 'CM at Risk 방식이 공공적인 특성이라는 점을 강조할 때, CM방식을 활용하다라고 반드시 'CM at Risk 방식이어야 하는가에 대해서는 의문이 남는다.

한편 이와 같은 의문을 논의로 한다면, 본 특성요인들에 대해 상대적으로 가장 높은 점수를 얻은 항만 및 공항 시설이 '병
원 및 복지사설, 발전 및 승진사실 등에 ‘CM at Risk 방식’의 적용가능성이 가장 큰 것으로 평가할 수 있다.

표 7. CM at Risk 적용 대상공사의 일반적 특성에 대한 설문조사 결과

<table>
<thead>
<tr>
<th>특성요인</th>
<th>CM at Risk 적용 대상공사의 일반적 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>설문조사 유형</td>
<td>1</td>
</tr>
<tr>
<td>1. 공공주택</td>
<td>6.90</td>
</tr>
<tr>
<td>2. 권익사 및 오피스</td>
<td>7.88</td>
</tr>
<tr>
<td>3. 학교 및 교육시설</td>
<td>7.30</td>
</tr>
<tr>
<td>4. 병원 및 복지시설</td>
<td>8.15</td>
</tr>
<tr>
<td>5. 도로 및 교량</td>
<td>7.27</td>
</tr>
<tr>
<td>6. 학교 및 공항</td>
<td>6.51</td>
</tr>
<tr>
<td>7. 철도 및 도로</td>
<td>7.87</td>
</tr>
<tr>
<td>8. 발전 및 승진사실</td>
<td>8.57</td>
</tr>
<tr>
<td>0. 평균</td>
<td>7.79</td>
</tr>
<tr>
<td>표준편차</td>
<td>0.866</td>
</tr>
</tbody>
</table>

4.3.2 ‘CM at Risk-GMP 방식’ 적용 대상공사의 특성에 대한 분석결과

(1) 패스트 트랙 방식 적용 시 발주자 예산의 제약으로 인한 공
공사비에 대한 예측과 조기 확정의 필요성
본 특성요인에 대해서는 학교 및 교육시설(7.55)이 가장 높은 점수를 얻었으며, 그 외에 ‘권익사 및 오피스(7.53), 발전 및 승진사실(7.47), 공공주택(7.30) 등이 높게 평가되었다.

그러나, 발전 및 승진사실을 제외하고 나머지 유형의 시설물
의 경우, 앞에서 분석한 설문결과에서 ‘패스트 트랙을 적용한 공
공지단위의 필요성’이 크게 중요하지 않은 것으로 평가되었던 것
을 감안할 때, ‘CM at Risk 방식’의 적용 가능성 차원에서만
보도 공공사 조기 예측 또는 확정이라는 모든 유형의 공사에 적
용되는 공통적인 목적이 반영된 결과가 될 수 있다. 또한 이 요인
에 대한 시설물 유형간의 차이가 본 연구에서 분석한 모든 요인
들 중 가장 낮게 나타났으며, 따라서 이와 같은 해석은 나머지 요
인들에도 공통적으로 적용할 수 있을 것으로 판단된다.

(2) 패스트 트랙 방식 적용 시 설계단계의 공사비용의가능성
설계단계의 공사비용의가능성은 ‘도로 및 교량(6.27)’, ‘공공주택(6.18)’, 학교 및 교육시설(6.15) 등과 같이 단순, 반
복적인 공사유형에서 높게 평가되었고 ‘항만 및 공항 시설
(5.12)’은 가장 낮게 평가되었다. 이것은 GMP 방식의 적용가능성
을 판단한 때 단순히 모순된 결과를 보여주는데, 즉, 전반적인 시
설물 유형은 단순, 반복적이어서 설계단계의 공사비용 가
능성이 높으나, 전문적인 사업관리 기능이나 패스트 트랙 적용의
필요성 등에 있어 높게 평가되지 못한 시설물들이고, ‘항만 및 공
항 시설’은 상대적으로 CM 방식 적용의 필요성을 인정되나
GMP 방식을 적용하기에는 공사비의 변동이 심하여 부적합한 것
으로 나타났기 때문이다.

(3) 사공단계에서 가장 간단한 설계변경 가능성이 최소화
이 요인에 대해 사공단계에서 설계변경 가능성이 가장 높은
유형은 ‘공공주택(6.33)’으로, 가장 낮은 유형은 ‘항만 및 공항
(4.52)’으로 나타났다. 이 결과 역시 위의 분석결과와 같은 맥락
에서 분석할 수 있는데, 설계변경 가능성이 가장 높다는 점에서
는 ‘공공주택’이 GMP 방식의 대상이 될 수 있지만, 전반적인 필요
성에 있어서는 적합하지 않은 것으로 평가할 수 있으며, CM의
일반적인 특성을 고려할 때 가장 필요성이 인정되는 ‘항만 및 공
항시설’의 경우 이 특성 요인이 차근차근 보더라도 GMP 방식의 적
용은 매우 불리하다고 판단할 수 있다.

이상과 같이 GMP 방식에 대한 특성을 분석해보면, 대부분의 시설물 유형들이 관련된 특성에 부합하지 않거나 부합하더라도
앞서의 분석결과를 고려할 때 일반적인 CM방식의 적용에 상대
적적으로 부적합한 시설로 판단되므로 본 연구에서 대상으로 하고
있는 공공건설공사에 ‘CM at Risk-GMP 방식’을 적용하는 데
에는 상당한 한계가 있을 것으로 판단된다.
4.3.3 'CM at Risk-설비정산 방식' 적용 대상공사의 특성에 대한 분석결과

(1) 공공부문 'CM at Risk-설비정산 방식'의 적합성

본 특성에 대한 설문결과는 15개 기업 중 평균점수가 '발주자의 사업관리 능력 부족(5.95)' 다음으로 가장 낮게 나타났다. (평균:5.96) 즉, 이것은 본 연구의 대상인 공공공사에서는 대부분의 경우 공사비가 더 높더라도 공기단계에 무게를 두고 추진해야 할 필요성이 그다지 높지 않은 것임을 의미한다. 따라서 정해진 총액계약금액이나 GMP 없이 실공사비를 지급하면서 공사를 성공적 추진하는 'CM at Risk-설비정산 방식'은 공공부문에 상대적으로 적합하지 않는다는 것을 알 수 있다. 시험용 수행범위는 '항간 및 공항 시설(5.76)'의 점수가 가장 높았고, '공동주택(4.38)'이 가장 낮았다.

(2) 공사비 증가에 대한 발주자의 재정적 능력

'CM at Risk-설비정산 방식'에서는 GMP와 같이 공사비에 대한 상한선을 두지 않으므로 발주자의 재정적 능력이 요구되어야 할 뿐만 아니라 이와 관련된 리스크도 높다. 본 특성요인에 대하여 '비용 및 용도(6.10)'와 '항간 및 공항 시설(6.0)'의 점수가 높게 나열되었고, 이것은 이 유형의 공사가 대부분 대규모로 독특성이 발휘된 것으로 판단된다. 그러나 이 특성요인들에 대한 점수 역시 전반적으로 높지 않아 공공공사의 경우 발주자의 재정능력에 한계가 있다는 인식을 보여주고 있다. 가장 낮은 평균을 받은 시설을 지정하는 '공동주택(4.85)'으로 주택정책과 관련된 공공공사가 반영된 결과가 명확하다.

4.3.3 'CM at Risk-설비정산 방식' 적용 대상공사의 특성에 대한 분석결과

(3) 설계 환경의 악화 또는 시장 재정의 가능성

이 특성요인은 전체가 가장 큰 폭으로(표준편차:0.759) 가장 높은 점수인 '항간 및 공항 시설(7.52)'과 '공동주택(5.18)'의 차이가 두드러진다. 이 결과에 보고 보면, 항간 및 공항 시설 공사의 경우, 설계의 조기 확정이 어렵고 시장이 제저될 가능성
이 높이 'CM at Risk-실비정산 방식'의 적용 가능성도 상대적으로 높은 것으로 평가할 수 있으나, 발주자 재정 능력이나 공기 단축의 필요성이 5~6점대에 머무르던 것을 감안할 때 'CM at Risk-실비정산 방식'의 적용을 쉽게 결정할 수 있는 상황은 아니 것으로 사료된다.

(4) 사공단계에서 저속적인 설계변경의 가능성

이 요인 역시 시설물 유형간 변차가 크게 나뉘는데(표준변
차: 0.744), 가장 높은 '방면 및 공항 시설(7.09)'과 '병원 및 복지
시설(6.72)'을 제외하고 '공공주택(4.55)'을 포함해 모든 시설물
유형이 4~5점으로 낮게 평가되었다. 이와 같이 사공단계에서
저속적인 설계변경이 일어날 가능성이 낮지 않다는 것은 발주자
가 비용적인 리스크를 감수하면서 'CM at Risk-실비정산 방식'
을 적용하여야 할 필요성 역시 크지 않은 것으로 의미한다.

그림 17. 사공단계에서 설계변경 가능성에 대한 설문 결과

표 9. CM at Risk-실비정산방식 적용 대상공사의 특성에 대한
설문조사 결과

<table>
<thead>
<tr>
<th>특성유형</th>
<th>특성유형대상비교대상공사의 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>시설물유형</td>
<td>1</td>
</tr>
<tr>
<td>1. 공공주택</td>
<td>4.38</td>
</tr>
<tr>
<td>2. 관공서 및 오락시설</td>
<td>5.12</td>
</tr>
<tr>
<td>3. 교육 및 교육시설</td>
<td>5.40</td>
</tr>
<tr>
<td>4. 병원 및 복지시설</td>
<td>5.15</td>
</tr>
<tr>
<td>5. 도로 및 교량</td>
<td>5.94</td>
</tr>
<tr>
<td>6. 첨단 및 공항</td>
<td>5.76</td>
</tr>
<tr>
<td>7. 철도 및 철도</td>
<td>5.69</td>
</tr>
<tr>
<td>8. 빌딩 및 주거시설</td>
<td>5.70</td>
</tr>
<tr>
<td>9. 그 외</td>
<td>5.17</td>
</tr>
<tr>
<td>점수</td>
<td>5.96</td>
</tr>
<tr>
<td>표준편차</td>
<td>0.456</td>
</tr>
</tbody>
</table>

이상의 결과를 종합해보면, '방면 및 공항 시설'이 'CM at Risk-실비정산 방식'의 특성에 가장 가까운 것으로, 반면 '공공 주택'은 가장 거리가 먼 것으로 평가할 수 있다. 그러나 모든 시설물 유형에 대한 모든 특성요인의 평가점수가 10점 최도에서 '보통'을 약간 상회하는 수준으로 나타났고, 특히 공기단축에 대

한 필요성이나 발주자 재정능력 등의 한계를 고려할 때 공공분문
에서 'CM at Risk-실비정산 방식'의 적용은 GMP 방식과 마찬
가지로 매우 특수한 상황을 제외하고 극히 제한적인 수밖에 없을 것으로 판단된다.

5. 결론

건설사업의 성공을 위해서는 많은 기술적 요인들 못지않게 프로세스의 목표와 특성에 맞는 최적의 발주방식을 선정하는 것이
중요하다. 이러한 관점에서 최근 논의되고 있는 'CM at Risk 발주방식'의 공공분문 도입 문제는 과연 이발주방식이 공공공사
로서의 특성과 시설물 유형 고유의 특성에 적합한가를 최우선적
으로 고려하여 판단하여야 할 것이다.

따라서 본 연구는 공공분문 'CM at Risk 방식' 도입의 타당성
을 분석하기 위해 공공시설물의 유형을 9가지로 구분하고 일반
적인 'CM at Risk 방식'과 'CM at Risk-GMP 방식', 'CM at Risk-
방식-실비정산 방식'에 대한 적용대상 공사의 특성요인을
도출하여 각 유형에 대한 적합도를 분석하였다. CM업계의 전문
가들이 대상으로 한 설문조사를 통해 실시한 타당성 분석 결과를
보면, 우선 'CM at Risk 방식'의 일반적 특성의 경우, 특히 전문
적인 사업관리 기능의 필요성과 프로젝트 전 단계 결정 일원화된
관리 및 연속성이 유지, 설계업무와 사공동무간의 원활한 의사교환
과 협조체계 등에 대해서서의 유형에 관계없이 중요성이 높은
것으로 조사되어 'CM at Risk 방식'을 적용할 경우, 이에 대한
기대효과를 충족시킬 수 있을 것으로 조사되었다. 그러나 페스트
트레이크를 통한 공기단축의 필요성에 대해서는 중요성이 낮게 평가
되어 CM방식을 적용하더라도 반드시 'CM at Risk 방식'이어야
하는 것이여야 하는데 이는 'CM at Risk-GMP 방식'이나 'CM at
Risk-실비정산 방식' 등 세부적인 운영방식에 대한 장단점을 판
단 후 적용이 적합할 것으로 판단되었다.

한편, GMP 방식에 대한 설문결과를 살펴보면, 대부분 시설물
유형의 관련 특성에 대한 적합도가 10점 최도에서 '보통'을 약간
상회하는 수준으로 평가되어 GMP 방식의 도입으로 큰 효과
를 기대하기 어려운 것으로 나타났다. 또한 일부 시설물 유형의 경
우, 특정 특성요인이 부합한다 하더라도 이미 일반적인 CM방식
의 적용이 상대적으로 부적합한 시설로 나타나 본 방식의 적용이
쉽지 않은 것으로 분석되었다.

'CM at Risk-실비정산 방식'의 경우, '방면 및 공항 시설' 이
방식의 특성에 가장 가까운 것으로 평가되었지만, 여기서도
모든 시설물 유형에 대한 모든 특성요인의 평가점수가 '보통'을
약간 상회하는 수준으로 나타나, GMP 방식과 유사한 결론에 도
달하게 되었다.

이상의 결과를 종합해보면, 설문에 응답한 CM전문가들은 'CM at Risk 방식'의 도입에 부정적인 인식을 가지고 있는 것으로 나타났지만, 공기중독에 대한 필요성 부재나 발주자의 제한된 재정능력 등 기존 공공공사의 특성에 비추어 볼 때 'CM at Risk 방식'의 적용은 극히 제한적인 수밖에 없을 것으로 분석되었다. 따라서 향후 국내 공공공문에 'CM at Risk 방식'이 도입될 때, 선진국에서의 경험에 발주방식이라는 이유 하나만으로 제도도입에 대한 타당성을 부여할 것이 아니라 본 발주방식의 장점을 극대화하는데 제도적 장애요소가 무엇인지 파악하고 이를 개선하고자 하는 노력이 필요하다고 할 것이다.

참고문헌

김오경 (2008). "갈길 밑 CM at Risk", 특집 CM at Risk, 제9권 제3호, 한국건설관리학회, pp. 9
Abstract

A high degree of management skills and functions is essential to the success of construction projects. While the various construction management delivery methods have been realized as the solutions, Korean government is planning to introduce 'CM at Risk Method' to the public construction projects. However, even if its effect has been verified successful in the international market, it must be considered before legally adapting the method that it would be suitable to our public sector. In this respect, the purpose of this study is to evaluate and analyze feasibility of 'CM at Risk Method'. In order to do that, 15 attributes of construction projects were found, which were suitable to 'CM at Risk Method' in general, 'CM at Risk-GMP Method', and 'CM at Risk-Cost Reimbursable Method' and suitability of each attribute to each of 9 categories of public construction facilities was evaluated by questionnaire survey to CM specialists. Results showed that 'CM at Risk Method' might not bring improper effect to the industry but due to the characteristic of public sector, the effect would be very limited.

Keywords: CM at Risk Method, CM at Risk-GMP Method, CM at Risk-Cost Reimbursable Method, Attribute of construction projects