Inhibitory Activity of Garlic Fermented by Pediococcus pentosaceus KACC 91419 against Antibiotic-resistant Pathogens

  • Ham, Jun-Sang (National Institute of Animal Science, RDA) ;
  • Lee, Seung-Gyu (National Institute of Animal Science, RDA) ;
  • Kim, Min-Kyung (National Institute of Animal Science, RDA) ;
  • Oh, Mi-Hwa (National Institute of Animal Science, RDA) ;
  • Jeong, Seok-Geun (National Institute of Animal Science, RDA) ;
  • Kim, Dong-Hun (National Institute of Animal Science, RDA) ;
  • Lee, Se-Hyung (Department of Animal Resources Science, Dankook University) ;
  • Chae, Jong-Pyo (Department of Animal Resources Science, Dankook University) ;
  • Lee, Ji-Yoon (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
  • Received : 2009.08.31
  • Accepted : 2009.12.30
  • Published : 2010.09.01


The aim of this study was to screen lactic acid bacteria for the fermentation of garlic and to assess the increase in inhibitory activity of garlic fermented against antibiotic-resistant pathogens for use as an animal feed supplement. We screened 45 strains of lactobacillus for the fermentation of garlic. Of these strains, 23 showed similar growth rates with or without allicin. Cultures of the 23 strains were mixed with an equivalent amount of garlic juice and incubated overnight at $37^{\circ}C$. The three strains with the lowest pH values were Lactobacillus paracasei KCTC 3169, L5 strain, and L. reuteri SW. Garlic juice fermented by the L5 strain more strongly inhibited antibiotic-resistant pathogenic bacteria than L. paracasei KCTC 3169, L. reuteri SW, or garlic juice itself. By examining carbohydrate utilization, morphologic properties and 16S rRNA gene sequences, we identified the L5 strain as Pediococcus pentosaceus and deposited it in the name of P. pentosaceus KACC 91419 into the Korea Agricultural Culture Collection. To identify the antimicrobial compound from the garlic filtrate fermented by P. pentosaceus KACC 91419, we fractionated P. pentosaceus KACC 91419 culture on a C18 column and checked the antimicrobial activity of fractions A6 to A10. Only fraction A9 showed inhibitory activity on Staphylococcus aureus. Comparing the mass spectra of the fractions with and without antimicrobial activity, we observed a single dominant product ion (m/z 157.99) from the fraction showing antimicrobial activity. Its molecular mass (157.99) was 2 atomic mass units less than that of allicin (162.02). This suggests that allicin might be converted to its derivative, which has antimicrobial activity, during fermentation by P. pentosaceus KACC 91419.


  1. Aarestrup, F. M. 2000. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. Acta Pathol. Microbiol. Immunol. Scand. Suppl. 101:1-48.
  2. Amagase, H., B. L. Petesch, H. Matsuura and Y. Itakura. 2001. Intake of garlic and its bioactive components. J. Nutr. 131:955S-962S.
  3. Ankri, S. and D. Mirelman. 1999. Antimicrobial properties of allicin from garlic. Microbes Infect. 1:125-129.
  4. Cho, H. Y., S. H. Park, J. S. Jo and C. S. Jung. 2001. Effect of the garlic on the fermentation and quality of kimchi. Kor. J. Diet. Cult. 16:470-477.
  5. Collier, C. T., J. D. van der Klis, B. Deplancke, D. B. Anderson and H. R. Gaskins. 2003. Effects of tylosin on bacterial mucolysis, Clostridium perfringens colonization, and intestinal barrier function in a chick model of necrotic enteritis. Antimicrob. Agents Chemother. 47:3311-3317.
  6. Didry, N., L. Dubreuil and M. Pinkas. 1992. Antimicrobial activity of naphthaquinones and Allium extracts combined with antibiotics. Pharm. Acta Helv. 67:148-151.
  7. Ellmore, G. S. and R. S. Feldberg. 1994. Alliin lyase localization in bundle sheaths of garlic cloves (Allium sativum). Am. J. Bot. 81:89-94.
  8. Fani, M. M., J. Kohanteb and M. Dayaghi. 2007. Inhibitory activity of garlic (Allium sativum) extract on multidrug-resistant Streptococcus mutans. J. Indian Soc. Pedod. Prev. Dent. 25:164-168.
  9. Ham, J. S., H. S. Kim, K. H. Hong, J. G. Kim, S. G. Jeong, H. S. Chae, J. N. Ahn, D. K. Kang and H. U. Kim. 2003. Inhibitory activity of lactic acid bacteria against hazardous microbes. Asian-Aust. J. Anim. Sci. 16:1550-1554.
  10. Jezowa, L., T. Rafinski and T. Wrocinski. 1966. Investigations on the antibiotic activity of Allium sativum L. Herba Pol. 12:3-13.
  11. Kandler, O. and N. Weiss. 1986. Genus Lactobacillus. In: Bergey's Manual of Systematic Bacteriology, Vol. 2 (Ed. P. H. A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt). WILLIAMS & WILKINS, Baltimore. pp.1209-1234.
  12. Ko, S. Y., I. H. Bae, S. T. Yee, D. Uuganbayar, J. I. Oh and C. J. Yang. 2007. Comparison of the effect of green tea by-product and green tea probiotics on the growth performance, meat quality and immune response of finishing pigs. Asian-Aust. J. Anim. Sci. 21:1486-1494.
  13. Knarreborg, A., M. A. Simon, R. M. Engberg, B. B. Jensen and G. W. Tannock. 2002. Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microbiol. 68:5918-5924.
  14. Lee, H. J., J. Bae, M. Yang, H. Han, Y. Ko and H. Kim. 1993. Characteristics of lactic acid bacterial community during Kimchi fermentation by temperature downshift. Kor. J. Microbiol. 31:346-353.
  15. Lee, J.-W., Y.-J. Ji, M.-H. Yu, H.-G. Im, M.-H. Hwangbo and I.-S. Lee. 2005. Antimicrobial effect of extract of Glycyrrhiza uralensis on methicillin-resistant Staphylococcus aureus. Korean J. Food Sci. Technol. 37(3):456-464.
  16. Martin, K. W. and E. Ernst. 2003. Herbal medicines for treatment of bacterial infections: A review of controlled clinical trials. J. Antimicrob. Chemother. 51:241-246.
  17. Pavlova, S. I., A. O. Kilic, S. S. Kilic, J.-S. So, M. E. Nader-Macias, J. A. Simoes and L. Tao. 2002. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J. Appl. Microbiol. 92:451-459.
  18. Prasad, G. and V. D. Sharma. 1980. Efficacy of garlic (Allium sativum) treatment against experimental candidiasis in chicks. Br. Vet. J. 136(5):448-51.
  19. Rees, L. P., S. F. Minney, N. T. Plummer, J. H. Slater and D. A. Skyrme. 1993. A quantitative assessment of the antimicrobial activity of garlic (Allium sativum). World J. Microbiol. Biotechnol. 9:303-307.
  20. Ross, Z. M., E. A. O'Gara, D. J. Hill, H. V. Sleightholme and D. J. Maslin. 2001. Antimicrobial properties of garlic oil against human enteric bacteria: Evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl. Environ. Microbiol. 67:475-480.
  21. Sharma, R., C. L. Sharma and B. Kapoor. 2005. Antibacterial resistance: current problems and possible solutions. Indian J. Med. Sci. 59:120-129.
  22. Singh, S. V., R. R. Mohan, R. Agarwal, P. J. Benson, X. Hu, M. A. Rudy, H. Xia, A. Katoh, S. K. Srivastava, H. Mukhtar, V. Gupta and H. A. Zaren. 1996. Novel anti-carcinogenic activity of an organosulfide from garlic: inhibition of H-RAS oncogene transformed tumor growth in vivo by diallyl disulfide is associated with inhibition of p21H-ras processing. Biochem. Biophys. Res. Commun. 225:660-665.
  23. Singer, R. S. and C. L. Hofacre. 2006. Potential impacts of antibiotic use in poultry production. Avian Dis. 50:161-172.
  24. Sivam, G. P., J. W. Lampe, B. Ulness, S. R. Swanzy and J. D. Potter. 1997. Helicobacter pylori in vitro susceptibility to garlic (Allium sativum) extract. Nutr. Cancer 27:118-121.
  25. Tagg, J. R. and A. R. McGiven. 1971. Assay system for bacteriocins. J. Appl. Microbiol. 21:943.
  26. Tsao, S. M. and M. C. Yin. 2001. In vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oil. J. Med. Microbiol. 50:646-649.
  27. Tynecka, Z. and Z. Gos. 1975. The fungistatic activity of garlic (Allium sativum) in vitro. Ann. Univ. Curie-Sklodowska Sect. D Med. 30:5-13.
  28. Yoshida, H., H. Katsuzaki, R. Ohta, K, Ishikawa, H. Hukuda, T. Fujino and A. Suzuki. 1999. An organosulfur compound isolated from oil-macerated garlic extract, and its antimicrobial effect. Biosci. Biotechnol. Biochem. 63:588-590.

Cited by

  1. In Vitro Antibacterial Mechanism of Action of Crude Garlic (Allium sativum) Clove Extract on Selected Probiotic Bifidobacterium Species as Revealed by SEM, TEM, and SDS-PAGE Analysis vol.6, pp.2, 2014,
  3. Beneficial Effects of Garlic in Livestock and Poultry Nutrition: A Review pp.2249-7218, 2018,