Physiological Characteristics and Angiotensin Converting Enzyme Inhibitory Activity of Lactobacillus brevis HLJ59 Isolated from Salted Shrimp

국내 새우젓에서 분리한 Lactobacillus brevis HLJ59의 Angiotensin Converting Enzyme 저해활성 및 생리적 특성

  • Jeon, Chun-Pyo (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yun-Hoi (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Jung-Bok (Department Food and Nutrition Science, Kundong University) ;
  • Jo, Min-Sub (Department of Bioresource Sciences, Andong National University) ;
  • Shin, Kee-Sun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Chung-Sig (Bio Industry Institute, HansBio Co. Ltd.) ;
  • Kwon, Gi-Seok (Department of Bioresource Sciences, Andong National University)
  • 전춘표 (안동대학교 생명자원과학과) ;
  • 김윤회 (안동대학교 생명자원과학과) ;
  • 이중복 (건동대학교) ;
  • 조민섭 (안동대학교 생명자원과학과) ;
  • 신기선 (한국생명공학연구원) ;
  • 최충식 ((주)한스바이오 부설바이오산업연구소) ;
  • 권기석 (안동대학교 생명자원과학과)
  • Received : 2009.11.24
  • Accepted : 2009.12.17
  • Published : 2010.03.31

Abstract

In this study, lactic acid bacteria with high angiotensin converting enzyme inhibitor activity were isolated from Korean fermented food, such as kimchi and salted seafood. The strain HLJ59, isolated from salted shrimp showed the highest angiotensin converting enzyme inhibitor activity in DeMan Rogosa Sharpe broth. Optimum growth temperature of Lactobacillus brevis HLJ59 was at $34^{\circ}C$. Acid treatment at pH 3.0 for 1.5 h decreased cell viability from $9.9{\times}10^8$ CFU/ml to $3.11{\times}10^4$ CFU/ml. The bile extract concentration of 0.3%, 0.5%, and 1.0% in MRS broth did not inhibit the growth of HLJ59. Isolated strain HLJ59 showed more sensibility to amikacin, gentamycin, neomycin, streptomycin, kanamycin, cefmetazole, cephalothin, ampicillin, ticarcillin, sulbactam+ampicillin, amoxicillin+clavulanic acid (AMC), tetracycline, and sulfamethoxazole+trime thoprim (SXT) as compare to other 7 different antibiotics. However, it showed more resistance to cefoxatin, ceftnaxone, penicillin, ciprofloxacin, nalidixic acid, lincomycin, and chloramphenicol.

본 연구는 우리나라 전통 발효식품인 장류, 김치류 및 젓갈류로부터 angiotensin converting enzyme 저해활성이 우수한 젖산균을 분리하고자 하였다. 젖산균을 분리하기 위한 선택배지로서 bromocresol purple (BCP) 한천배지를 사용하여 1차적으로 젖산균을 분리하였으며, 그 중 angiotensin converting enzyme 저해활성이 우수한 균주를 최종 선발하였다. 분리된 젖산균을 16S rRNA 유전자 염기서열 분석으로 동정한 결과 Lactobacillus brevis ATCC $14869^T$와 99.7%의 유사도를 나타냄에 따라 L. brevis HLJ59로 명명하였다. L. brevis HLJ59는 내산성의 경우 pH가 2.0, 3.0으로 보정된 DeMan Rogosa Sharpe 액체배지에서 접종 후 각각 90분, 30분이 경과하였을 때 배양초기와 비교 시 약 99% 감소하는 결과를 보였으나, 담즙산(Bile extract)의 경우 1% 첨가 시에도 생육에 저해를 받지 않는 것으로 조사되어 L. brevis HLJ59 균주는 담즙산에 대한 내성이 우수한 균주임을 확인하였다. 항생제 내성의 경우 20종의 항생제를 paper disc법으로 조사한 결과 본 균주는 cephalosporin계의 cefoxatin (30 ${\mu}g$), ceftnaxone (30 ${\mu}g$), penicillin계의 penicillin (10 units), quinolones계 cprofloxacin (5 ${\mu}g$), nalidixic acid (30 ${\mu}g$), lincosamid계의 lincomycin (2 ${\mu}g$) 및 기타 chloramphenicol (30 ${\mu}g$)에 대해서는 내성을 가지고 있음을 확인하였다.

Acknowledgement

Grant : 마의 부가가치 증대 및 산업화를 위한 가공기술의 개발

References

  1. Booth, I.R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.
  2. Cha, S.H., G.N. Ahn, S.J. Heo, K.N. Kim, K.W. Lee, C.B. Song, S.K. Cho, and Y.J. Jeon. 2006. Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J. Kor. Soc. Food Sci. Nutr. 35, 307-314. https://doi.org/10.3746/jkfn.2006.35.3.307
  3. Charteris, W.P., P. Kelly, L. Morelli, and J.K. Collins. 1998. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 26, 333-337.
  4. Cho, J.K., G.H. Li, S.J. Cho, Y.C. Yoon, S.G. Hwang, K.C. Heo, and I.S. Choe. 2007. The identification and physiological properties of Lactobacillus plantarum JK-01 isolated from Kimchi. Kor. J. Food Sci. Ani. Resour. 27, 363-370. https://doi.org/10.5851/kosfa.2007.27.3.363
  5. Cho, Y.J., W.S. Cha, S.K. Bok, M.U. Kim, S.S. Chun, and U.K. Choi. 2000. Production and separation of anti-hypertensive peptide during chunggugjang fermentation with Bacillus subtilis CH-1023. J. Kor. Soc. Agri. Chem. Biotechnol. 43, 247-252.
  6. Choi, H.D., Y.S. Kim, I.W. Choi, Y.K. Park, and Y.D. Park. 2006. Hypotensive effect of germinated brown rice on spontaneously hypertensive rats. Kor. J. Food Sci. Technol. 38, 448-451.
  7. Clack, P.A., L.N. Cotton, and J.H. Martin. 1993. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-tolerance to simulated pH of human stomachs. Cult. Dairy Prod. J. 28, 11-14.
  8. Cushman, D.W. and H.S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  9. Do, J.R., I.S. Heo, S.Y. Back, H.S. Yoon, J.H. Jo, Y.M. Kim, K.J. Kim, and S.K. Kim. 2006. Physiological activity/nutrition : Antihypertensive, antimicrobial and antifungal activities of buckwheat hydrolysate. Kor. J. Food Sci. Technol. 38, 268-272.
  10. Doyle, A.E. 1984. Handbook of hypertension: clinical pharmacology of antihypertensive drug, vol. 5, pp. 246-271. Elsevier, Amsterdam, Netherlands.
  11. Gilliland, S.E. and M.L. Speck. 1977. Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823. https://doi.org/10.4315/0362-028X-40.12.820
  12. Jauhiainen, T.K. 2007. Milk peptides and blood pressure. J. Nutr. 137, 825S-829S. https://doi.org/10.1093/jn/137.3.825S
  13. Jeon, J.H. Production of $\gamma$-aminobutyric acid (GABA) by immobilization of lactic acid bacteria isolated from salt fermented anchovy. Ph.D. thesis. Dissertation. Dept. of Food Science and Biotechnology Graduate School. Kyungsung University. Busan.
  14. Jo, J.S. 1989. Analytical survey on the study of traditional fermented food in Korea. Kor. J. Diet Culture 4, 375-382.
  15. Jung, J.W. 2009. Hypertension in children and adolescents. Kor. J. Pediatr. 52, 745-751. https://doi.org/10.3345/kjp.2009.52.7.745
  16. Kang, H.J., B.C. Kim, and W. Park. 2004. Isolation of tetracyclineresistant lactic acid bacteria from Kimchi. Kor. J. Microbiol. 40, 1-6.
  17. Lim, S.D., K.S. Kim, and J.R. Do. 2008. Physiological characteristics and ACE inhibitory activity of Lactobacillus zeae RMK354 isolated from raw milk. Kor. J. Food Sci. Ani. Resour. 28, 587-595. https://doi.org/10.5851/kosfa.2008.28.5.587
  18. Na, C.S., D.H. Yun, D.H. Choi, J.S. Kim, C.H. Cho, and J.B. Eun. 2003. The effect of pear pectin on blood pressure, plasma renin, ANP and cardiac hypertrophy in hypertensive rat induced by 2K1C. J. Kor. Soc. Food Sci. Nutr. 32, 700-705. https://doi.org/10.3746/jkfn.2003.32.5.700
  19. Noh, K.A., D.H. Kim, N.S. Choi, and S.H. Kim. 1999. Isolation of fibrinolytic enzyme producing strains from kimchi. Kor. J. Food Sci. Technol. 31, 219-223.
  20. Park, K.Y. 2002. Korean traditional food and their anticancer effects. J. Kor. Soc. Plant. People Environ. 5, 41-45.
  21. Park, S.Y., Y.T. Ko, H.K. Jeong, J.O. Yang, H.S. Chung, Y.B. Kim, and G.E. Ji. 1996. Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol. 24, 304-310.
  22. Park, Y.R., D.K. Chung, H.S. Nam, and Z.I. Shin. 1996. Effect of soybean hydrolysate on hypertension in spontaneously hypertensive rats. J. Kor. Soc. Food Sci. Nutr. 25, 1031-1036.
  23. You, S.J., J.K. Cho, S.G. Hwang, and K.C. Heo. 2005. Probiotic characteristics of Lactobacillus rhamnosus isolated from kefir. Kor. J. Food Sci. Ani. Resour. 25, 357-364.
  24. Yun, J.S., B.H. Chung, N.Y. Kim, N.S. Seong, H.Y. Lee, J.H. Lee, and J.D. Kim. 2003. Screening of 94 plant species showing ACE inhibitory activity. Kor. J. Medicinal Crop Sci. 11, 246-251.