CoMFA on the Antiproliferative Activity of N-Substituted(R) 2-Amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole Analogues against Bladder and Rectal Cancer Cells

방광암(HCV29T) 및 직장암(SW707) 세포에 대한 N-치환(R)-2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole 유도체의 항증식 활성에 관한 CoMFA 분석

  • Myung, Pyung-Keun (Department of Pharmacy, College of Pharmacy, Chungnam National University) ;
  • Kang, Na-Na (Department of Pharmacy, College of Pharmacy, Chungnam National University) ;
  • Lee, Jae-Hwang (Department of Applied Biological Chemistry, College of Agriculture & Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biological Chemistry, College of Agriculture & Life Science, Chungnam National University)
  • 명평근 (충남대학교 약학대학 약학과) ;
  • 강나나 (충남대학교 약학대학 약학과) ;
  • 이재황 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학과)
  • Received : 2010.04.29
  • Accepted : 2010.06.25
  • Published : 2010.10.31

Abstract

Comparative molecular field analyses (CoMFA) on the antiproliferative activity of N-substituted (R) 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole analogues (ADTs: 1-17) against bladder cancer (HCV29T) and rectal cancer (SW707) cells were studied quantitatively. The statistical predictability and fitness of CoMFA A1 model for bladder cancer cells were better than those of CoMFA F1 model for rectal cancer cells and the antiproliferative activity of ADTs depends on steric field (HCV29T: 93.1% & SW707: 83.8%). Also, from the contour maps of optimized CoMFA models, the activity for bladder cancer cells had predicted to increase when sterically favored groups were substituted on meta- and para-position, and sterically disfavored groups were substituted on one ortho-position of phenyl ring. The activity for rectal cancer cells had predicted to increase when sterically favored groups were substituted on para-position, and sterically disfavored groups were substituted on two ortho-position of phenyl ring as R-group.

Acknowledgement

Supported by : 한국연구재단

References

  1. Raghavan, D., Shipley, W, U., Garnick, M. B., Russell, P. J. and Richie, J. P. : Biology and management of bladder cancer. N. Engl. J. Med. 322, 1129 (1990). https://doi.org/10.1056/NEJM199004193221607
  2. Loening, S., Narayana, A., Yoder, L., Slymen, D., Weinstein, S., Penick, G. and Culp, D. : Factors influencing the recurrence rate of bladder cancer. J. Urol. 123, 29 (1980).
  3. Murphy, W. M., Soloway, M. S., Jukkola, A. F., Crabtree, W. N. and Ford, K. S. : Urinary cytology and bladder cancer. Cancer 53, 1555 (1984). https://doi.org/10.1002/1097-0142(19840401)53:7<1555::AID-CNCR2820530723>3.0.CO;2-G
  4. Rosenberg, B. : Fundamental studies with cisplatin. Cancer 55, 2303 (1985). https://doi.org/10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L
  5. Ali, B. H. and Al Moundhri, M. S. : Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds : A review of some recent research. Food Chem. Toxicol. 44, 1173 (2006). https://doi.org/10.1016/j.fct.2006.01.013
  6. Lippert, B. : Impact of Cisplatin on the recent development of Pt coordination chemistry: a case study. Coord. Chem. Rev. 182, 263 (1999). https://doi.org/10.1016/S0010-8545(98)00192-1
  7. Chirino, Y. I., Hernandez-Pando, R. and Pedraza-Chaveri, J. : Peroxynitrite de composition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 4, 20 (2004). https://doi.org/10.1186/1471-2210-4-20
  8. Go, R. S. and Adjei, A. A. : Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J. Clin. Oncol. 17, 409 (1999).
  9. Senff-Ribeiro, A., Echevarria, A., Silva, E. F., Veigab, S. S. and Oliveiraa, M. B. M. : Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: a structure-activity relationship study. Anticancer Drugs 15, 269 (2004). https://doi.org/10.1097/00001813-200403000-00012
  10. Oleson, J. J., Sloboda, A., Troy, W. P., Halliday, S. L., Landes, M. J., Angier, R. B., Semb, J., Cyr, K. and Williams, J. H. : The carcinostatic activity of some 2-amino-1,3,4-thiadiazoles. J. Am. Chem. Soc. 77, 6713 (1955).
  11. Foroumadi, A., Soltani, F., Moallemzadeh-Haghighi, H. and Shafiee, A. : Synthesis, in vitro-antimycobacterial activity and cytotoxicity of some alkyl a-(5-aryl-1,3,4-thiadiazole-2-ylthio) acetates. Arch. Pharm. 338, 112 (2005). https://doi.org/10.1002/ardp.200400926
  12. Bhattacharya, P., Leonard, J. T. and Roy, K. : Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists using FA and GFA techniques. Bio. Med. Chem. 13, 1159 (2005). https://doi.org/10.1016/j.bmc.2004.11.022
  13. Jung, K. Y., Kim, S. K., Gao, Z. G., Gross, A. S., Melman, N., Jacobson, K. A. and Kim, Y. C. : Structure activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bio. Med. Chem. 12, 613 (2004). https://doi.org/10.1016/j.bmc.2003.10.041
  14. Fontanini, G., Lucchi, M., Vignati, S., Mussi, A., Ciardiello, F., De Laurentis, M., De Placido, S., Basolo, F., Angeletti, C. A. and Bevilacqua, G. : Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J. Natl. Cancer Inst. 89, 881 (1997). https://doi.org/10.1093/jnci/89.12.881
  15. Kawaguchi, T., Yamamoto, S., Kudoh, S., Goto, K., Wakasa, K. and Sakurai, M. : Tumor angiogenesis as a major prognostic factor in stage I lung adenocarcinoma. Anticancer Res. 17, 3743 (1997).
  16. Soung, M. K., Kil, M. J. and Sung, N. D. : Structural characteristic that influence on the insecticidal activity of 2-(noctyl) pseudothiourea analogues against the Diamondback moth (Plutella xylostella. L.) Bull. Kor. Chem. Soc. 30, 2749 (2009). https://doi.org/10.5012/bkcs.2009.30.11.2749
  17. Soung, M. K., Lee, Y. J. and Sung, N. D. : 3D-QSARs of herbicidal 2-N-phenylisoindolin-1-one analogues as a new class of potent inhibitors of protox. Bull. Kor. Chem. Soc. 30, 613 (2009). https://doi.org/10.5012/bkcs.2009.30.3.613
  18. Soung, M. K., Myung, P. K. and Sung, N. D. : 3D-QSAR analysis on the inhibitory activity of [(2-phenylindol-3-yl)- methylene]propanedinitrile analogues against breast cancer cell and the ligand design of active molecules. J. Kor. Soc. Appl. Biol. Chem. 52, 28 (2009). https://doi.org/10.3839/jksabc.2009.005
  19. Kim, S. J., Myung, P. K. and Sung, N. D. : CoMFA on the melanogenesis inhibitory activity of alkyl-3,4-dihydroxybenzoate, N-alkyl-3,4-dihydroxybenzamide analogues, and prediction of higher active molecules. Arch. Pharm. Res. 31, 1540-1546 (2008). https://doi.org/10.1007/s12272-001-2148-4
  20. Akamatsu M. : Current state and perspectivies of 3D-QSAR. Curr. Topics Med. Chem. 2, 1381 (2002). https://doi.org/10.2174/1568026023392887
  21. Cramer, R. III, Patterson, D. E. and Bunce, J. D. : Comparative molecular field analysis (CoMFA) 1. Effect of shape on the binding of steroid to carrier proteins. J. Am. Chem. Soc. 110, 5959 (1988). https://doi.org/10.1021/ja00226a005
  22. Matysiak, J. and Opolski, A. : Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)- 1,3,4-thiadiazoles. Bio. Med. Chem. 14, 4483 (2006). https://doi.org/10.1016/j.bmc.2006.02.027
  23. Reddy, M. R. and Parrill, A. L. : Overview of rational drug design. In Rational Drug, (ed. Eddy, M. R. and Parrill). Ch. 1. ACS Symposium Series. 719, p1 (1999).
  24. Klebe, G., Abraham, U. and Mietzner, T. : Molecular similarity indexes in a comparative analysis (comsia) of drug molecules to correlate and predict their biological-activity. J. Med. Chem. 37, 4130 (1994). https://doi.org/10.1021/jm00050a010
  25. Purushottamachar, P. and Kulkarni, V. M. : 3D-QSAR of Nmyristoyltransferase inhibiting antifungal agents by CoMFA and CoMSIA methods. Bio. Med. Chem. 11, 3486 (2003).