The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production

NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구

  • Choi, Eun-Jeong (Dept. of Chemical Engineering, Chungnam National University) ;
  • Koo, Kee-Young (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Jung, Un-Ho (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Rhee, Young-Woo (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Yoon, Wang-Lai (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • 최은정 (충남대학교 바이오 응용화학부) ;
  • 구기영 (한국에너지기술연구원 수소에너지연구센터) ;
  • 정운호 (한국에너지기술연구원 수소에너지연구센터) ;
  • 이영우 (충남대학교 녹색에너지 기술전문대학원) ;
  • 윤왕래 (한국에너지기술연구원 수소에너지연구센터)
  • Received : 2010.09.20
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.

Keywords

Metal monolith catalyst;Ni/$MgAl_2O_4$;Wash-coating;Steam reforming;Hydrogen

Acknowledgement

Grant : 신재생에너지기술개발사업

Supported by : 한국에너지 기술평가원

References

  1. J. Xu, G. G. Froment, "Methane steam reforming, methanation and water-gas shift: l. Intrinsic kinetics", AIChE Journal, Vol. 35, 1989, pp. 88-96. https://doi.org/10.1002/aic.690350109
  2. H.-S. Roh, K. Y. Koo, U. H. Jung, W. L. Yoon, "Hydrogen production from natural gas steam reforming over Ni catalysts supported on metal substrates", Current Applied Physics, Vol. 10, 2010, pp. S37-S39. https://doi.org/10.1016/j.cap.2009.11.037
  3. O. Sanz, L. M. Martinez T, F. J. Echave, M. I. Dominguez, M. A. Centeno, J. A. Odriozola, M. Montes, "Aluminium anodisation for $Au-CeO_{2}/Al_{2}O_{3}-Al$ monoliths preparation", Chemical Engineering Journal, Vol. 151, 2009, pp. 324-332. https://doi.org/10.1016/j.cej.2009.03.062
  4. J.-H. Ryu, K.-Y. Lee, H. Lab, H.-J. Kim, J.-I. Yang, H. Jung, "Ni catalyst wash-coated on metal monolith with enhanced heat-transfer capability for steam reforming", Journal of Power Sources, Vol. 171, 2007, pp. 499-505. https://doi.org/10.1016/j.jpowsour.2007.05.107
  5. P. Avila, M. Montes, E. E. Mir'o, "Monolithic reactors for environmental applications A review on preparation technologies", Chemical Engineering Journal, Vol. 109, 2005, pp. 11-36. https://doi.org/10.1016/j.cej.2005.02.025
  6. J. Jia, J. Zhou, J. Zhang, Z. Yuan, S. Wang, "The influence of preparative parameters on the adhesion of alumina washcoats deposited on metallic supports", Applied Surface Science, Vol. 253, 2007, pp. 9099-9104. https://doi.org/10.1016/j.apsusc.2007.05.034
  7. A. Stefanescu, A. C. van Veen, C. Mirodatos, J. C. Beziat, E. Duval-Brunel, "Wall coating optimization for microchannel reactors", Catalysis Today, Vol. 125, 2007, pp. 16-23. https://doi.org/10.1016/j.cattod.2007.01.074
  8. 정진혁, 구기영, 서유택, 서동주, 노현석, 서용석, 이득기, 김동현, 윤왕래, "미량 귀금속첨가에 의한 Ni-계열 메탄 수증기 개질 촉매의 반응 활성 형상에 관한 연구", 한국수소 및 신에너지학회, Vol. 17, 2006, pp. 248-254
  9. L. Giani, C. Cristiani, G. Groppi, E. Tronconi, "Washcoating method for $Pd/\gamma-Al_{2}O_{3}$ deposition on metallic foams", Applied Catalysis B: Environmental, Vol. 62, 2006, pp. 121-131 https://doi.org/10.1016/j.apcatb.2005.07.003
  10. L. Jia, M. Shen, J. Wang, "Preparation and characterization of dip-coated $\gamma-alumina$ based ceramic materials on FeCrAl foils", Surface & Coatings Technology, vol. 201, 2007, pp. 7159-7165 https://doi.org/10.1016/j.surfcoat.2007.01.023
  11. V. Meille, "Review on methods to deposit catalysts on structured surfaces", Applied Catalysis A: General, Vol. 315, 2006, pp. 1-17 https://doi.org/10.1016/j.apcata.2006.08.031
  12. K. Y. Koo, H. K. Joo, U. H. Jung, E. J. Choi, S. You, W. L. Yoon, "Novel surface pretreatment for metal structured catalyst", Catalyst Today, Submitted.
  13. H.-S. Roh, D. K. Lee, K. Y. Koo, U. H. Jung, W. L. Yoon, "Natural gas steam reforming for hydrogen production over metal monolith catalyst with efficient heat-transfer", International journal of hydrogen energy, Vol. 35, 2010, pp. 1613-1619. https://doi.org/10.1016/j.ijhydene.2009.12.051
  14. L. Zhou, Y. Guo, Q. Zhang, M. Yagi, J. Hatakeyama, H. Li, J. Chen, M. Sakurai, H. Kameyama, "A novel catalyst with plate-type anodic alumina supports, $Ni/NiAl_{2}O_{4}/\gamma-Al_{2}O_{3}/alloy$, for steam reforming of methane", Applied Catalysis A: General, Vol. 347, 2008, pp. 200-207. https://doi.org/10.1016/j.apcata.2008.06.007