DOI QR코드

DOI QR Code

Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop -

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 -

  • Received : 2009.12.07
  • Accepted : 2010.03.11
  • Published : 2010.03.31

Abstract

The heat flowrate and pressure dorp of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were predicted using LMTD method and compared with the experimental data. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa], respectively. The LMTD method is used to predict the heat flowrate and pressure drop of supercritical $CO_2$ during in-tube cooling. The equations used by LMTD method were Gnielinski correlation for $CO_2$ and Dittus-Boelter correlation for coolant, respectively. The equation used to predict the pressure drop of $CO_2$ and coolant is Blasius correlation. In comparison of heat flowrate and pressure drop of $CO_2$ measured by experiment to that predicted by LMTD method, the experimental heat flowrate and pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler shows a relatively good agreement with that predicted by LMTD method.

다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고 그 결과를 실험값과 비교하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075 kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. 초임계 $CO_2$의 냉각시의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고, 이때 냉매측 열전달과 압력강하식은 각각 Gnielinski와 Dittus-Boelter 식을 사용하였다. LMTD법으로 예측한 값과 실험값을 비교한 결과, $CO_2$의 열유량과 압력강하는 상대적으로 좋은 일치를 보였다.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. L. Yun, Y. C. Kim and M. S. Kim, "Two-phase flow patterns of $CO_2$ in a narrow rectangular channel", Int. Congress of Refrigeration, Washington D. C., pp. 1-7, 2003.
  2. G. Lorentzen and J. Pettersen, "A new, efficient and environmentally benign system for car air-conditioning," Int. J. of Refrigeration, vol. 16, no. 1, pp. 4-12, 1993. https://doi.org/10.1016/0140-7007(93)90014-Y
  3. B. Yun, H. Y. Park, K. C. Yoo and Y. C. Kim, "Air-conditioner cycle simulation using tube-by-tube method", Korean Journal of Air-Conditioning and Refrigeration Engineering, vol. 11, no. 4, pp. 499-510, 1999.
  4. Z. Yuan, M. Michael and D. Jafer, "Forced convection boiling heat transfer of $CO_2$ in horizontal tubes", Xth ASME/JSME Joint Thermal Engineering Conference, 1999.
  5. A. M. K. Bredesen, J. Aflekt, A. Pettersen, P. Hafner, G. Neksà, Skaugen, "Studies on $CO_2$ heat exchangers and heat transfer", IEA/IIR Workshop on $CO_2$ Technologies in Refrigeration, Heat Pump, and Air-conditioning Systems, Trondheim, Norway, May 13-14.
  6. S. S. Pitla, D. M. Robinson, E. A. Groll, E. A. and S. Ramadhyani, "Heat transfer from supercritical carbon dioxide in tube flow: A critical review", HVAC&R research, vol. 4, no. 4, 281-301, 1998. https://doi.org/10.1080/10789669.1998.10391405
  7. D. A. Olson, "Heat transfer of supercritical carbon dioxide flowing in a cooled horizontal tube", Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, July 25-28, pp. 251-258.
  8. 오후규, 손창효, "$CO_2$ 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1),-다중관식 헬리컬코일형 가스냉각기내 CO2의 열유량과 압력강하", 한국마린엔지니어링학회, 34권, 4호, pp. 263-271, 2010.
  9. H. K. Oh, C. H. Son, T. G. Yu and D. H. Kim, "An experimental study on hea transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a helically coiled tube", J. of the Korea Society of Marine Eng., vol. 31, no, 3, pp. 263-271, 2007. https://doi.org/10.5916/jkosme.2007.31.3.263
  10. 김영률 등, $CO_2$를 이용한 냉난방 및 급탕 시스템용 열교환기 개발-급탕용 열교환기, 2단계 보고서, 산업자원부, 2007.
  11. R. K. Shah and W. W. Focke, "Plate heat exchanger and their design theory", in : Shah, R. K., Subbarao, E. C. and Mashelkar, R. A. (Eds.), Heat Transfer Equipment Design, Hemisphere, Washington, DC, pp. 227-254, 1998.
  12. 조강래, 유정렬, 강신형, 유체역학, 희중당, 3판, pp. 362-363, 1994.
  13. C. H. Son, Heat Transfer Characteristics of Supercritical Cycle of Carbon Dioxide in a Horizontal Tube, Thesis for the Degree of Doctor of Philosophy, Department of Refrigeration and Air-Conditioning, Pukyong National University, 2004.
  14. C. F. Colebrook, "Turbulent flow in pipes, with particular reference to the transition between the smooth and rough pipe laws", J. Inst. Civ. Eng, Lond., vol. 11, 1938-1939, pp. 133-156. https://doi.org/10.1680/ijoti.1939.13150
  15. S. A. Klein and F. L. Alvarado, EESengineering Equation solver. 4406 Fox Bluff Rd, Middleton(WI 53562): F-Chart Software, 1998.

Cited by

  1. 온수제조용 CO2 히트펌프의 가스쿨러 열전달 성능 해석 vol.14, pp.11, 2010, https://doi.org/10.5762/kais.2013.14.11.5317