DOI QR코드

DOI QR Code

Engineered microdevices for single cell immunological assay

  • Choi, Jong-Hoon (Department of Chemical Engineering, Massachusetts Institute of Technology)
  • Received : 2010.03.22
  • Accepted : 2010.04.27
  • Published : 2010.06.30

Abstract

Microdevices have been used as effective experimental tools for the rapid and multiplexed analysis of individual cells in single-cell assays. Technological advances for miniaturizing such systems and the optimization of delicate controls in micron-sized space homing cells have motivated many researchers from diverse fields (e.g., cancer research, stem cell research, therapeutic agent development, etc.) to employ microtools in their scientific research. Microtools allow high-throughput, multiplexed analysis of single cells, and they are not limited by the lack of large samples. These characteristics may significantly benefit the study of immune cells, where the number of cells available for testing is usually limited. In this review, I present an overview of several microtools that are currently available for single-cell analyses in two popular formats: microarrays and microfluidic microdevices. Then, I discuss the potential to study human immunology on the single-cell level, and I highlight several recent examples of immunoassays performed with single-cell microdevice assays. Finally, I discuss the outlook for the development of optimized assay platforms to study human immune cells. The development and application of microdevices for studies on single immune cells presents novel opportunities for the qualitative and quantitative characterization of immune cells and may lead to a comprehensive understanding of fundamental aspects of human immunology.

References

  1. Bao, N., Wang, J., and Lu, C. (2008). Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391, 933-942. https://doi.org/10.1007/s00216-008-1899-x
  2. Bradshaw, E.M., Kent, S.C., Tripuraneni, V., Orban, T., Ploegh, H.L., Hafler, D.A., and Love, J.C. (2008). Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies. Clin Immunol 129, 10-18. https://doi.org/10.1016/j.clim.2008.06.009
  3. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J.B., Rothberg, J.M., Link, D.R., Perrimon, N., and Samuels, M.L. (2009). Droplet microfluidi technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106, 14195-14200. https://doi.org/10.1073/pnas.0903542106
  4. Bruzewicz, D.A., Reches, M., and Whitesides, G.M. (2008). Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80, 3387-3392. https://doi.org/10.1021/ac702605a
  5. Di Carlo, D., Wu, L.Y., and Lee, L.P. (2006). Dynamic single cell culture array. Lab Chip 6, 1445-1449. https://doi.org/10.1039/b605937f
  6. Diercks, A.H., Ozinsky, A., Hansen, C.L., Spotts, J.M., Rodriguez, D.J., and Aderem, A. (2009). A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386, 30-35. https://doi.org/10.1016/j.ab.2008.12.012
  7. Easley, C.J., Rocheleau, J.V., Head, W.S., and Piston, D.W. (2009). Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal Chem 81, 9086-9095. https://doi.org/10.1021/ac9017692
  8. Faley, S.L., Copland, M., Wlodkowic, D., Kolch, W., Seale, K.T., Wikswo, J.P., and Cooper, J.M. (2009). Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9, 2659-2664. https://doi.org/10.1039/b902083g
  9. Fan, H.C., Blumenfeld, Y.J., El-Sayed, Y.Y., Chueh, J., and Quake, S.R. (2009). Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am J Obstet Gynecol 200, 543.e541-547.
  10. Fan, R., Vermesh, O., Srivastava, A., Yen, B.K., Qin, L., Ahmad, H., Kwong, G.A., Liu, C.C., Gould, J., Hood, L., et al. (2008). Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26, 1373-1378. https://doi.org/10.1038/nbt.1507
  11. Howard, R.E., Liao, P.F., Skocpol, W.J., Jackel, L.D., and Craighead, H.G. (1983). Microfabrication as a Scientific Tool. Science 221, 117-121. https://doi.org/10.1126/science.221.4606.117
  12. Hueber, W., Kidd, B.A., Tomooka, B.H., Lee, B.J., Bruce, B., Fries, J.F., Sonderstrup, G., Monach, P., Drijfhout, J.W., van Venrooij, W.J., et al. (2005). Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum 52, 2645-2655. https://doi.org/10.1002/art.21269
  13. Huh, D., Gu, W., Kamotani, Y., Grotberg, J.B., and Takayama, S. (2005). Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26, R73-98. https://doi.org/10.1088/0967-3334/26/3/R02
  14. Jin, A., Ozawa, T., Tajiri, K., Obata, T., Kondo, S., Kinoshita, K., Kadowaki, S., Takahashi, K., Sugiyama, T., Kishi, H., et al. (2009). A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat Med 15, 1088-1092. https://doi.org/10.1038/nm.1966
  15. Kim, H., Cohen, R.E., Hammond, P.T., and Irvine, D.J. (2006). Live lymphocyte arrays for biosensing. Adv Funct Mater 16, 1313-1323. https://doi.org/10.1002/adfm.200500888
  16. Kim, H., Doh, J., Irvine, D.J., Cohen, R.E., and Hammond, P.T. (2004). Large area two-dimensional B cell arrays for sensing and cell-sorting applications. Biomacromolecules 5, 822-827. https://doi.org/10.1021/bm034341r
  17. Kinoshita, K., Ozawa, T., Tajiri, K., Kadowaki, S., Kishi, H., and Muraguchi, A. (2009). Identification of antigen-specific B cells by concurrent monitoring of intracellular Ca2+ mobilization and antigen binding with microwell array chip system equipped with a CCD imager. Cytometry A 75, 682-687.
  18. Kirschbaum, M., Jaeger, M.S., and Duschl, C. (2009). Correlating short-term Ca(2+) responses with long-term protein expression after activation of single T cells. Lab Chip 9, 3517-3525. https://doi.org/10.1039/b911865a
  19. Kumaresan, P., Yang, C.J., Cronier, S.A., Blazej, R.G., and Mathies, R.A. (2008). High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80, 3522-3529. https://doi.org/10.1021/ac800327d
  20. Lim, C.T., and Zhang, Y. (2007). Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22, 1197-1204. https://doi.org/10.1016/j.bios.2006.06.005
  21. Love, J.C., Ronan, J.L., Grotenbreg, G.M., van der Veen, A.G., and Ploegh, H.L. (2006). A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24, 703-707. https://doi.org/10.1038/nbt1210
  22. Manjarrez-Orduno, N., Quach, T.D., and Sanz, I. (2009). B cells and immunological tolerance. J Invest Dermatol 129, 278-288. https://doi.org/10.1038/jid.2008.240
  23. McDonald, J.C., Duffy, D.C., Anderson, J.R., Chiu, D.T., Wu, H., Schueller, O.J., and Whitesides, G.M. (2000). Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27-40. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  24. McKenna, B.K., Selim, A.A., Richard Bringhurst, F., and Ehrlich, D.J. (2009). 384-channel parallel microfluidic cytometer for rare-cell screening. Lab Chip 9, 305-310. https://doi.org/10.1039/b811889b
  25. Mills, J.C., Roth, K.A., Cagan, R.L., and Gordon, J.I. (2001). DNA microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 3, E175-178. https://doi.org/10.1038/35087108
  26. Mittal, N., Flavin, S., and Voldman, J. (2007). Patterning of embryonic stem cells using the bio flip chip. J Vis Exp, 318.
  27. Myers, F.B., and Lee, L.P. (2008). Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015-2031. https://doi.org/10.1039/b812343h
  28. Nevill, J.T., Cooper, R., Dueck, M., Breslauer, D.N., and Lee, L.P. (2007). Integrated microfluidic cell culture and lysis on a chip. Lab Chip 7, 1689-1695. https://doi.org/10.1039/b711874k
  29. Ochsner, M., Dusseiller, M.R., Grandin, H.M., Luna-Morris, S., Textor, M., Vogel, V., and Smith, M.L. (2007). Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab Chip 7, 1074-1077. https://doi.org/10.1039/b704449f
  30. Ogunniyi, A.O., Story, C.M., Papa, E., Guillen, E., and Love, J.C. (2009). Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4, 767-782. https://doi.org/10.1038/nprot.2009.40
  31. Poletaev, A.B., Stepanyuk, V.L., and Gershwin, M.E. (2008). Integrating immunity: the immunculus and self-reactivity. J Autoimmun 30, 68-73. https://doi.org/10.1016/j.jaut.2007.11.012
  32. Psaltis, D., Quake, S.R., and Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381-386. https://doi.org/10.1038/nature05060
  33. Quake, S.R., and Scherer, A. (2000). From micro- to nanofabrication with soft materials. Science 290, 1536-1540. https://doi.org/10.1126/science.290.5496.1536
  34. Rettig, J.R., and Folch, A. (2005). Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77, 5628-5634. https://doi.org/10.1021/ac0505977
  35. Ronan, J.L., Story, C.M., Papa, E., and Love, J.C. (2009). Optimization of the surfaces used to capture antibodies from single hybridomas reduces the time required for microengraving. J Immunol Methods 340, 164-169. https://doi.org/10.1016/j.jim.2008.10.018
  36. Rowat, A.C., Bird, J.C., Agresti, J.J., Rando, O.J., and Weitz, D.A. (2009). Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 106, 18149-18154. https://doi.org/10.1073/pnas.0903163106
  37. Seidel, M., and Niessner, R. (2008). Automated analytical microarrays: a critical review. Anal Bioanal Chem 391, 1521-1544. https://doi.org/10.1007/s00216-008-2039-3
  38. Skelley, A.M., and Voldman, J. (2008). An active bubble trap and debubbler for microfluidic systems. Lab Chip 8, 1733-1737. https://doi.org/10.1039/b807037g
  39. Story, C.M., Papa, E., Hu, C.C., Ronan, J.L., Herlihy, K., Ploegh, H.L., and Love, J.C. (2008). Profiling antibody responses by multiparametric analysis of primary B cells. Proc Natl Acad Sci U S A 105, 17902-17907. https://doi.org/10.1073/pnas.0805470105
  40. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., and Quake, S.R. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116. https://doi.org/10.1126/science.288.5463.113
  41. Valero, A., Merino, F., Wolbers, F., Luttge, R., Vermes, I., Andersson, H., and van den Berg, A. (2005). Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5, 49-55. https://doi.org/10.1039/b415813j
  42. Voldman, J., Gray, M.L., and Schmidt, M.A. (1999). Microfabrication in biology and medicine. Annu Rev Biomed Eng 1, 401-425. https://doi.org/10.1146/annurev.bioeng.1.1.401
  43. Zhu, H., Stybayeva, G., Macal, M., Ramanculov, E., George, M.D., Dandekar, S., and Revzin, A. (2008). A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8, 2197-2205. https://doi.org/10.1039/b810244a
  44. Zhu, H., Stybayeva, G., Silangcruz, J., Yan, J., Ramanculov, E., Dandekar, S., George, M.D., and Revzin, A. (2009). Detecting cytokine release from single T-cells. Anal Chem 81, 8150-8156. https://doi.org/10.1021/ac901390j