Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials

함수구배재료에서 천이탄성동적모드 III 균열전파

  • Lee, Kwang-Ho (Dept. of Mechanical and Automotive Engineering, Kyungpook Nat'l Univ.)
  • 이광호 (경북대학교 기계자동차공학부)
  • Received : 2010.01.05
  • Accepted : 2010.05.24
  • Published : 2010.07.01


A generalized elastic solution for a transient mode III crack propagating along the gradient in functionally graded materials (FGMs) is obtained through an asymptotic analysis. The shear modulus and density of the FGMs are assumed to vary exponentially along the gradient. The stress and displacement fields near the crack tip are obtained in terms of powers of radial coordinates, and the coefficients depend on the time rates of the change of the crack tip speed and stress intensity factors. The influence of nonhomogeneity and transients on the higher order terms of the stress and displacement fields is discussed.


Transient Elastodynamic Mode III Crack;Functionally Graded Materials;Crack Growth;Stress and Displacement Fields


Supported by : 경북대학교


  1. Niino, A. and Maeda, S., 1990, “Recent Developmentstatus of Functionally Gradient Materials,” ISIJ Int.,Vol. 30, pp. 699-703.
  2. Zhang L. M., Liu, J, Yuan R. Z. and Hirai T., 1995,“Properties of TiC-Ni3Al Composites and StructuralOptimization of TiC-Ni3Al Functionally GradientMaterials,” Mat. Sci. and Eng. A, Vol. 203, pp.272-277.
  3. Chen, E. S. C., 1999, “Army Focused Research Teamon Functionally Graded Armor Composites,” Mat. Sci.Eng. A, Vol. 259, pp. 155-161.
  4. Wang, Y. W., Wang, F. C., Yu, X. D. and Ma, Z.,2007, “Research Advancement on Graded Ceramic-Metal Armor Composites,” Binggong Xuebao/ActaArmamentarii, Vol. 28 (2), pp. 209-214.
  5. Pompea, W., Worch, H., Epple, M., Friess , W.,Gelinsky, M., Greil, P., Hempele, U., Charnweber,D. and Schulte, K., 2003, “Functionally GradedMaterials for Biomedical Applications,” Mat. Sci.Eng. A, Vol. 362, pp. 40-60.
  6. Watari, F., Yokoyama, A., Omori, M., Hirai, T.,Kondo, H., Uo, M. and Kawasaki, T., 2004,“Biocompatibility of Materials and Development toFunctionally Graded Implant for Bio-MedicalApplication,” Com. Sci. Tech., Vol. 64, pp. 893-908.
  7. Delale, F. and Erdogan, F, 1983, “The Crack Problemfor a Nonhomogeneous Plane,” ASME J. Appl. Mech.,Vol. 50, pp. 609-614.
  8. Eischen, J. W. , 1987, “Fracture of NonhomogeneousMaterials,” Int. J. Fract., Vol. 34(1), pp. 3-22.
  9. Konda, N., Erdogan, F., 1994, “The Mixed ModeCrack Problem in a Nonhomogeneous Elastic Plane,”Engng. Fract. Mech , Vol. 47, pp. 533-545.
  10. Jin, Z. H. and Batra, R. C., 1996, “Some BasicFracture Mechanics Concepts in Functionally GradedMaterials,” J. Mech. Phys. Solids, Vol. 44(8) pp.1221-1235.
  11. Atkinson, C., 1975 , “Some Results on CrackPropagation in Media with Spatially Varying ElasticModuli,” Int. J. Fract., Vol. 11 (4), pp. 619-628.
  12. Jiang, L. Y. and Wang, X. D., 2002, “On theDynamic Crack Propagation in an Interphase withSpatially Varying Elastic Properties Under InplaneLoading,” Int. J. Fract., Vol. 114, pp. 225-244.
  13. Ma, L., Wi, L.Z., Guo, L. C., and Zhou, Z. G., 2005“On the Moving Griffith Crack in a Non-Homogeneous Orthotropic Medium,” Euro. J. Mech.A/Solids, Vol. 24, pp. 393-405.
  14. Lee, K. H., 2009, “Analysis of a Propagating Crackin Functionally Gradient Materials with PropertyVariation Angled to Crack Direction,” ComputationalMaterials Science., Vol. 45, pp. 941-950.
  15. Tsi, Y. M., 1973, “Propagation of Brittle Crack atConstant and Accelerating Speeds,” Int. J. Solids andStruct , Vol. 9, pp. 625-642.
  16. Kostrov, B. V., 1975, “ On the Crack Propagationwith Variable Velocity,” Int. J. Fract., Vol. 11, pp.47-56.
  17. Freund, L. B., 1990, “Dynamic Fracture Mechanics.Cambrage,” Cambridge University Press.
  18. Nishioka, T., 1997, “Computational DynamicFracture Mechanics,” Int. J. Fract., Vol. 86, pp.127-159.
  19. Lee, K. H., Lee, Y. J. and Cho, S. B., 2009,“Characteristics of a Transiently Propagating Crack inFunctionally Graded Materials,” JMST, Vol. 23, pp.1306-1322.
  20. Lee, K. H., 2009, “Analysis of a TransientlyPropagating Crack in Functionally Graded MaterialsUnder Mode I and II,” Int. J. Eng. Sci., Vol. 47, pp.852-865.

Cited by

  1. Analysis of Unsteady Propagation of Mode III Crack in Arbitrary Direction in Functionally Graded Materials vol.39, pp.2, 2015,