DOI QR코드

DOI QR Code

Biosynthesis of Phenylpropanoid Amides by an Endophytic Penicillium brasilianum Found in Root Bark of Melia azedarach

  • Received : 2009.08.15
  • Accepted : 2009.10.14
  • Published : 2010.03.31

Abstract

Biosynthetic studies on brasiliamides, potently convulsive and bacteriostatic compounds from an endophytic Penicillium brasilianum isolated from Melia azedarach (Meliaceae), confirms their phenylpropanoid origin, which is very uncommon in fungi. Feeding experiments with [$2-^{13}C$]-phenylalanine indicated the incorporation of two units of this amino acid on brasiliamide structures. The first step in the phenylpropanoid pathway to those compounds was evaluated through enzymatic bioassays and confirmed the phenylalanine ammonia-lyase (PAL) participation. The metabolism of phenylalanine in this fungus is discussed.

References

  1. Benz, F., F. Kniisel, J. Nuesch, H. Treichler, W. Voser, R. Nyfeler, and W. Keller-Schierlein. 1974. Stoffwechselprodukte von mikroorganismen echinocandin B, ein neuartiges polypeptid - Antibioticum aus Aspergillus nidulans war. echinulatus: Isolierung und bausteine. Helv. Chim. Acta 57: 2459-2477. https://doi.org/10.1002/hlca.19740570818
  2. Campbell, I. M., M. A. Gallo, C. A. Jones, P. R. LaSitis, and L. M. Rosato. 1987. Role of cinnamates in benzoate production in Penicillium brevicompacum. Phytochemistry 26: 1413-1415. https://doi.org/10.1016/S0031-9422(00)81824-5
  3. Cole, R. J., M. A. Schweikert, and B. B. Jarvis. 2003. Handbook of Secondary Fungal Metabolites, 3rd Ed. Academic Press, Amserdam.
  4. Coy, E. D., L. E. Cuca, and M. Sefkow. 2009. Macrophyllintype bicyclo[3.2.1]octanoid neolignans from the leaves of Pleurothyrium cinereum. J. Nat. Prod. 72: 1245-1248. https://doi.org/10.1021/np9000569
  5. De Tommasi, N., S. Piacente, F. DeSimone, and C. Pizza. 1996. Constituents of Cydonia vulgaris: Isolation and structure elucidation of four new flavonol glycosides and nine new aionol-derived glycosides. J. Agric. Food Chem. 44: 1676-1681. https://doi.org/10.1021/jf950547a
  6. Dixon, R. A. and N. L. Paiva. 1995. Stress-lnduced Phenylpropanoid metabolism. Plant Cell 7: 1085-1097.
  7. Emiliani, G., M. Fondi, R. Fani, and S. Gribaldo. 2009. A horizontal gene transfer at the origin of phenylpropanoid metabolism: A key adaptation of plants to land. Biol. Direct 4: 1-12. https://doi.org/10.1186/1745-6150-4-1
  8. Ferrer, J. L., M. B. Austin, C. Stewart Jr., and J. P. Noel. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46: 356-370. https://doi.org/10.1016/j.plaphy.2007.12.009
  9. Ferrer, J. L., J. M. Jez, M. E. Bowman, R. A. Dixon, and J. P. Noel. 1999. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6: 775-784. https://doi.org/10.1038/11553
  10. Fill, T. P., G. K. Pereira, R. M. G. Santos, and E. Rodrigues-Filho. 2007. Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach: Possible biosynthetic intermediates to austin. Z. Naturforsch. 62B: 1035-1044.
  11. Fill, T. P., R. M. G. Santos, A. Barisson, E. Rodrigues-Filho, and A. Q. L. Souza. 2009. Co-production of bisphenylpropanoid amides and meroterpenes by an endophytic Penicillium brasilianum found in the root bark of Melia azedarach. Z. Naturforsch. 64c: 355-360.
  12. Frits, R. R., D. S. Hodgins, and C. W. Abell. 1976. Phenylalanine ammonia-lyase. Induction and purification from yeast and cleareance in mammals. J. Biol. Chem. 251: 4646-4650.
  13. Fujita, T., D. Makishima, K. Akiyama, and H. Hayashi. 2002. New convulsive compounds, brasiliamides A and B, from Penicillium brasilianum Batista JV-379. Biosci. Biotechnol. Biochem. 66: 1697-1705. https://doi.org/10.1271/bbb.66.1697
  14. Juvvadi, P. R., Y. Seshime, and K. Kitamoto. 2005. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J. Microbiol. 43: 475-486.
  15. Keller-Schierlein, W. and J. Widmer. 1976. Stoffwechselprodukte von mikroorganismen 159. Mitteilung. Uber die aromatishe aminosaure des echinocandins B, 3,4-dihihydroxyhomotyrosin. Helv. Chim. Acta 59: 2021-2031. https://doi.org/10.1002/hlca.19760590615
  16. Kumada, Y., H. Naganawa, H. Iinuma, M. Matsuzaki, T. Takeuchi, and H. Umezawa. 1976. Dehydrodicaffeic acid dilactone, an inhibitor of catechol-O-methyl transferase. J. Antibiot. 29: 882-889. https://doi.org/10.7164/antibiotics.29.882
  17. Lee, E. R., G. H. Kang, and S. G. Cho. 2007. Effect of flavonoids on human health: Old subjects but new challenges. Recent Pat. Biotechnol. 1: 139-150. https://doi.org/10.2174/187220807780809445
  18. Liang, X. W., M. Dron, C. L. Cramer, R. A. Dixon, and C. J. Lamb. 1989. Differential regulation of phenylalanine ammonialyase genes during plant development and by environmental cue. J. Biol. Chem. 264: 14486-14492.
  19. Ling, K. H., C. K. Yang, and F. T. Peng. 1979. Territrems, tremorgenic mycotoxins of Aspergillus terreus. Appl. Environ. Microbiol. 37: 355-357.
  20. Mabry, T. J. and A. Ulubelen. 1980. Chemistry and utilization of phenylpropanoids including flavonoids, coumarins, and lignans. J. Agric. Food Chem. 28: 189-196.
  21. MacDonald, M. J. and G. B. D'Cunha. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85: 273-282. https://doi.org/10.1139/O07-018
  22. Marchelli, R. and L. C. Vining. 1973. Biosynthesis of flavonoid and terphenyl metabolites by the fungus Aspergillus candidus. J. Chem. Soc. Chem. Commun. 555-556.
  23. Marchelli, R. and L. C. Vining. 1973. The biosynthetic origin of chlorflavonin, a flavonoid antibiotic from Aspergillus candidus. Can. J. Biochem. 51: 1624-1629.
  24. Massow, F. V. 1977. Incorporation of phenylpropanes into xylerythrin-type pigments in Peniophora sanguinea. Phytochemistry 16: 1695-1698. https://doi.org/10.1016/0031-9422(71)85072-0
  25. Massow, F. V. and H. E. Noppel. 1977. Biosynthesis of the xylerythrin-type pigments in Peniophora sanguinea. Phytochemistry 16: 1699-1700. https://doi.org/10.1016/0031-9422(71)85073-2
  26. Moore, B. S., C. Hertweck, J. N. Hopke, M. Izumikawa, J. A. Kalaitzis, G. Nilsen, et al. 2002. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J. Nat. Prod. 65: 1956-1962. https://doi.org/10.1021/np020230m
  27. Naoumkina, M., M. A. Farag, L. W. Sumner, Y. Tang, C. Liu, and R. A. Dixon. 2007. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc. Natl. Acad. Sci. U.S.A. 104: 17909-17915. https://doi.org/10.1073/pnas.0708697104
  28. Nuutinen, J. T. and S. Timonen. 2008. Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. Mycol. Res. 112: 1453-1464. https://doi.org/10.1016/j.mycres.2008.06.023
  29. Pagot, Y., J. Belin, F. Husson, and H. Spinnler. 2007. Metabolism of phenylalanine and biosynthesis of styrene in Penicillium camemberti. J. Dairy Res. 74: 180-185. https://doi.org/10.1017/S0022029906002251
  30. Parmar, V. S., H. N. Jha, A. K. Gupta, S. Prasad, and A. K. Agamanone. 1992. A flavanone from Agave americana. Phytochemistry 31: 2567-2568. https://doi.org/10.1016/0031-9422(92)83333-T
  31. Quijano, L., J. S. Calderon, G. F. Gomez, I. E. Soria, and T. Rios. 1980. Highly oxygenated flavanoids from Ageratum corymbosum. Phytochemistry 18: 2439-2442.
  32. Rani, M. and S. B. Kalidhar. 1996. Trioxygenations sites in the A-ring of naturally occurring flavanones and isoflavanones using 1H NMR spectroscopy. J. Med. Aromatic Plant Sci. 18: 473-476.
  33. Santos, R. M. G., E. Rodrigues-Filho, W. Caldas Rocha, and M. F. S. Teixeira. 2003. Endophytic fungi from Melia azedarach. World J. Microbiol. Biotechnol. 19: 767-770. https://doi.org/10.1023/A:1026000731189
  34. Seshime, Y., P. R. Juvvadi, I. Fujii, and K. Kitamoto. 2005. Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 337: 747-751. https://doi.org/10.1016/j.bbrc.2005.08.233
  35. Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 54: 733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
  36. Tomoyuki, F. and H. Hideo. 2004. New brasiliamide congeners, brasiliamides C, D and E, from Penicillium brasilianum Batista JV-379. Biosci. Biotechnol. Biochem. 68: 820-826. https://doi.org/10.1271/bbb.68.820
  37. Turnbull, J. J., J. Nakajima, R. W. D. Welford, M. Y. K. Saito, and C. J. Schofield. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: Anthocyanidin synthase, flavonol synthase, and flavanone 3-hydroxylase. J. Biol. Chem. 279: 1206-1216.
  38. Turner, W. B. and D. C. Aldridge. 1983. Fungal Metabolites II. pp. 594. 1st Ed. Academic Press, London.
  39. Umezawa, H., H. Tobe, N. Shibamoto, F. Nakamura, K. Nakamura, M. Matsuzaki, and T. Takeuchi. 1975. Isolation of isoflavones inhibiting dopa decarboxylase from fungi and Streptomyces. J. Antibiot. 28: 947-952. https://doi.org/10.7164/antibiotics.28.947
  40. Vannelli, T., W. W. Qi, J. Sweigard, A. A. Gatenby, and F. S. Sariaslani. 2007. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabol. Eng. 9: 142-151. https://doi.org/10.1016/j.ymben.2006.11.001
  41. Ververidis, F., E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos. 2007. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2: 1214-1234. https://doi.org/10.1002/biot.200700084
  42. Ververidis, F., E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos. 2007. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes. Biotechnol. J. 2: 1235-1249. https://doi.org/10.1002/biot.200700184
  43. Watanabe, S. K., G. Hernandez-Velazco, F. Iturbe-Chinas, and A. Lopez-Mungia. 1992. Phenylalanine ammonia-lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: Application for phenylalanine and tyrosine deamination. World J. Microbiol. Biotechnol. 8: 406-410. https://doi.org/10.1007/BF01198755
  44. Weisshaar, B. and G. I. Jenkins. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251-257. https://doi.org/10.1016/S1369-5266(98)80113-1
  45. Wenhui, M., M. Xiaolin, Y. Lu, and D. Chen. 2009. Lignans and triterpenoids from the stems of Kadsura induta. Helv. Chim. Acta 92: 709-715. https://doi.org/10.1002/hlca.200800363
  46. Yadav, R. N. and D. Brasainya. 1977. A novel 8,5'-methylenedioxy 3,7-dihydroxy flavone from seeds of Centratherum anthelminticum Kuntze. J. Instit. Chem. 69: 60-62.
  47. Yamada, S., K. Nabe, N. Izuo, K. Nakamichi, and I. Chibata. 1981. Production of L-phenylalanine from trans-cinnamic acid with Rhodotorula glutinis containing L-phenylalanine ammonialyase activity. Appl. Environ. Microbiol. 42: 773-778.