DOI QR코드

DOI QR Code

Antifungal Activity of Bacillus sp. BCNU 2003 against the Human Pathogenic Fungi

인체 병원성 진균에 대한 Bacillus sp. BCNU 2003의 항진균 효과

  • Received : 2010.01.04
  • Accepted : 2010.01.23
  • Published : 2010.02.28

Abstract

An antifungal antibiotic-producing strain, BCNU 2003, was isolated from forest soil in Korea. The morphological and physiological characters, and 16S rRNA sequences analysis of strain BCNU 2003 identified this strain as Bacillus genus. The Bacillus sp. BCNU 2003 showed strong antifungal activities against Aspergillus niger, Trichophyton mentagrophytes and Trichophyton rubrum with inhibition ranging from 62.05 to 63.49% by using dual culture technique. Bacillus sp. BCNU 2003 produced a maximum level of antifungal substances under aerobic incubation at 28oC and pH 6.5-7.2 for 6 days in LB broth. Ethyl acetate extract of the cultured broth showed strong antifungal activity and a broad antifungal spectrum against various pathogenic fungi. The minimum inhibitory concentration (MIC) values for its active extracts ranged between 0.0625 mg/ml and 1 mg/ml. In addition, Bacillus sp. BCNU 2003 was determined to have the ability to produce enzymes such as amylase, protease, gelatinase and catalase.

항생제 및 항진균제 개발에 있어 미생물 유래 천연 생리활성물질 분리를 통한 선도물질을 확보하는 일은 매우 중요하며, 신규 물질을 확보하기 위해 꾸준한 연구가 필요할 것으로 사료된다. 따라서 본 연구에서는 천연 항생물질의 개발을 위한 연구의 일환으로 태백산 일대의 토양에서, 인체에 다양한 감염증을 유발하는 효모와 곰팡이에 대하여 강한 항진균 활성을 나타내는 BCNU 2003 균주를 분리하여 항진균 활성 물질의 이용가능성에 대해 연구하였다. BCNU 2003은 계통적으로는 B. amyloliquefaciens와 B. vallismortis의 subcluster에 속하는 균주로 동정되어 Bacillus sp. BCNU 2003으로 명명하였다. 항균물질 분리를 위해 ethyl acetate (EA) 추출물과 펩타이드 추출물로 나누어 그람양성 세균, 그람음성 세균 및 진균에 대한 항균활성을 측정한 결과, EA 추출물이 6종의 인체병원성 진균에 대해 모든 높은 항진균 활성을 나타내었다. 특히 기회성 감염을 유발하는 A. niger, C. albicans 그리고 Sa. cerevisiae에 대해 높은 억제 활성을 나타냈으며, 균배양액에서 낮은 저해율을 보였던 Ep. floccosum에 대해서도 EA 추출물은 높은 활성을 나타내었다. 따라서 다양한 인체 병원성 진균에 대해 넓은 항균스펙트럼을 가지는 Bacillus sp. BCNU 2003 균주의 활성물질 분리를 통해 특정 항균 및 항진균 물질의 대량생산 조건 등의 추가적인 연구를 수행한다면, 인체 감염증을 포함한 광범위한 피부치료제의 응용개발이 가능하리라 사료된다.

Keywords

Acknowledgement

Supported by : 교육과학기술부, 한국산업기술진흥원

References

  1. Butler, M. S. 2004. The role of natural product chemistry on drug discovery. J. Nat. Prod. 67, 2131-2153.
  2. Butler, M. S. 2005. Natural products to drugs: natural product derived compounds on clinical trials. Nat. Prod. Rep. 22, 162-195. https://doi.org/10.1039/b402985m
  3. Butler, M. S. and A. D. Buss. 2006. Natural products-the future scaffolds for novel abtibiotics? Biochem. Pharmacol. 71, 919-929. https://doi.org/10.1016/j.bcp.2005.10.012
  4. Chomnawang, W. T., S. Surassmo, V. S. Nukoolkarn, and W. Gritasnapan. 2005. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 101, 330-333. https://doi.org/10.1016/j.jep.2005.04.038
  5. Favre, B., B. Hofbauer, K. S. Hildering, and N. S. Ryder. 2003. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbiol. 41, 4817-4819. https://doi.org/10.1128/JCM.41.10.4817-4819.2003
  6. Fukuda, T., A. Matsumoto, Y. Takahashi, H. Tomoda, and S. Omura 2005. Phenatic acids A and B, new potentiators of antifungal miconazole activity produced by Streptomyces sp. K03-0132. J. Antibiot. 58, 252-259. https://doi.org/10.1038/ja.2005.29
  7. Joo, W. H., S. J. Han, Y. L. Choi, and Y. K. Jeong. 2004. Antifungal compound produced by Bacillus sp. TMB 912. J. Life Sci. 14, 193-197. https://doi.org/10.5352/JLS.2004.14.1.193
  8. Kane, J. and R. C. Summerbel. 1999. Trychophyton, Microsporm, Epidermophyton, and agents of superficial mycosis, In Murray, P. R. E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken, (eds.), pp. 1275-1294, Manual of clinical microbiology. 7th eds., Washington D.C. ASM Press, USA.
  9. Kim, P. I. and K. C. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET 0908. FEMS Microbiol. Lett. 234, 177-183. https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
  10. Koehn, F. E. and G. T. Carter. 2005. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206-220. https://doi.org/10.1038/nrd1657
  11. Konishi, M., M. Nishio, K, Saitoh, T. Miyaki, T. Oki, and H. Kawaguchi. 1989. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J. Antibiotics 42, 1749-1755. https://doi.org/10.7164/antibiotics.42.1749
  12. Kumar, A., P. Saini, and J. N. Shrivastava. 2009. Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian J. Exp. Biol. 47, 57-62.
  13. Larone, D. H. 1995. Medically important fungi. 3rd eds., pp. 9, AMP Press, Washington, D.C. USA.
  14. Lee, D. H., S. R, Park, T. C. Kwon, and H. K. Jung. 1991. A water-soluble antifungal antibiotic from Streptomyces sp. LAM-593. J. Kor. Agric. Chem. Soc. 34, 180-186.
  15. Lee, H. J., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, H. Hwangbo, J. Y. Cho, Y. C. Kim, and K. Y. Kim. 2005. Isolation and identification of low milecuar weight compounds produced by Bacillus subtilis HJ927 and their biocontrol effect on the late blight of pepper (Capsicum annuum L.). J. Soil Sci. Fert. 38, 25-31.
  16. Lee, N. W., C. S. Kim, J. H. Do, I. C. Jung, H. W. Lee, and D. H. Yi. 1998. Isolation and identification of Bacillus sp. LAM 97-44 producing antifungal antibiotics. Agric. Chem. Biotech. 41, 208-212.
  17. Lee, S. G. 2003. Antimicrobial effect of Bamboo (Phyllosrachys bambusoides) essential oil on Trichophyton and Pityrosporum. J. Food Hyg. Safety 18, 113-117.
  18. National Committee for Clinical Laboratory Standards. 2004. Methods for antimicrobial susceptibility testing of anaerobic acteria: Approved Standard. 6th eds., Vol. 24, NCCLS Document M11-A6. Pennsylvania, USA.
  19. National Committee for Clinical Laboratory Standards. 2002. Reference methods for broth dilution antifungal susceptibility testing of yeasts: Approved Standard. 2nd eds., Vol. 22, NCCLS Document M27-A2. Pennsylvania. USA.
  20. Ruhnke, M., A. Schmidt-Westhausen, E. Engelmann, and M. Trautmann. 1996. Comparative evaluation of three antifungal susceptibility test methods for Candida albicans isolates and correlation with response to fluconazole therapy. J. Clin. Microbiol. 34, 3208-3211.
  21. Saito, N. and M. Nei. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79, 426-434.
  22. Shadomy, S., H. J. Shadomy, and G. E. Wagmer. 1977. Antifungal compounds, In Siegel, M. R. and D. S. HughI (eds.), pp. 437, Dekker, New York, USA.
  23. Shibazaki, M., T. sugawara, Y. Shimizu, H. Yamaguchi, and K. Suzuki. 1996. YM-47522, a novel antifungal antibiotic produced by Bacillus sp. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 49, 340-344. https://doi.org/10.7164/antibiotics.49.340
  24. Tawara, S., S. Matsumoto, T. Hirose, Y. Matsumoto, S. Nakamoto, and M. Mitsuno. 1989. In vitro antifungal synergism between pyrrolnitrin and clotrimazole. Med. Mycol. 30, 202-210. https://doi.org/10.3314/jjmm1960.30.202
  25. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  26. Tortorano, A. M., M. A. Viviani, F. Barchiesi, D. Arzeni, A. L. Rigoni, and M. Cogliat. 1998. Comparison of three methods for testing azole susceptibilities of Candida albicans strains isolated sequentially from oral cavities of AIDS patients. J. Clin. Microbiol. 36, 1578-1583.
  27. Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  28. Vikmon, M., A. Stadler-Szoke, and J. Szejtli. 1985. Solubilization of Amphotericin B with $\gamma$-cyclodextrin. J. Antibiotics. 38, 1822-1824. https://doi.org/10.7164/antibiotics.38.1822
  29. Weitzman, I. and R. C. Summerbel. 1995. The dermatophytes. Clin. Microbiol. Rev. 8, 240-159.
  30. Whipps, J. M. 1987. Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol. 107, 127-142. https://doi.org/10.1111/j.1469-8137.1987.tb04887.x
  31. Wong, J. H., J. Hao, Z. Cao, M. Qiao, H. Xu, Y. Bai, and T. B. Ng. 2008. An antifungal protein from Bacillus amyloliquefaciens. J. Appl. Microbiol. 105, 1888-1898. https://doi.org/10.1111/j.1365-2672.2008.03917.x
  32. Zhang, B., C. Xie, and X. Yang. 2008. A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides 29, 350-355. https://doi.org/10.1016/j.peptides.2007.11.024
  33. Zhao, Z., Q. K. Wang, K. Brian, C. Liu, and Y. Gu. 2010. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour. Technol. 101, 292-297. https://doi.org/10.1016/j.biortech.2009.07.071

Cited by

  1. Characterization of an Indigenous Antimicrobial Substance-producing Paenibacillus sp. BCNU 5011 vol.26, pp.2, 2011, https://doi.org/10.7841/ksbbj.2011.26.2.100
  2. Determination of Mass Culture Method of Marine-derived Micro Organism, Bacillus sp. 2-4 (KCCMI 11107P) with Antimicrobial Acitivity vol.30, pp.1, 2018, https://doi.org/10.13000/JFMSE.2018.02.30.1.123