DOI QR코드

DOI QR Code

Long-Term Forecasting by Wavelet-Based Filter Bank Selections and Its Application

Lee, Jeong-Ran;Lee, You-Lim;Oh, Hee-Seok

  • Received : 20100100
  • Accepted : 20100300
  • Published : 2010.04.30

Abstract

Long-term forecasting of seasonal time series is critical in many applications such as planning business strategies and resolving possible problems of a business company. Unlike the traditional approach that depends solely on dynamic models, Li and Hinich (2002) introduced a combination of stochastic dynamic modeling with filter bank approach for forecasting seasonal patterns using highly coherent(High-C) waveforms. We modify the filter selection and forecasting procedure on wavelet domain to be more feasible and compare the resulting predictor with one that obtained from the wavelet variance estimation method. An improvement over other seasonal pattern extraction and forecasting methods based on such as wavelet scalogram, Holt-Winters, and seasonal autoregressive integrated moving average(SARIMA) is shown in terms of the prediction error. The performance of the proposed method is illustrated by a simulation study and an application to the real stock price data.

Keywords

Filter bank;High-C waveforms;long-term forecasting;scalogram;time series analysis;wavelets

References

  1. Arino, M. A., Morettin, P. A. and Vidakovic, B. (2004). Wavelet scalogram and their applications in economic time series, Brazilian Journal of Probability and Statistics, 18, 37-51.
  2. Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed., Springer-Verlag, New York.
  3. Daubechies, I. (1992). Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia.
  4. Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425-455. https://doi.org/10.1093/biomet/81.3.425
  5. Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton.
  6. Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression, Journal of the Royal Statistical Society, Series B, 41, 190-195.
  7. Lee, G.-H. (1998). Decomposition and forecasting of corporate bond yields using wavelet, Economic Analysis: The Bank of Korea, 4, 1-23.
  8. Li, T. H. and Hinich, M. J. (2002). A filter bank approach for modeling and forecasting seasonal patterns, Technometrics, 44, 1-14. https://doi.org/10.1198/004017002753398182
  9. Lutkepohl, H. (2007). New Introduction to Multiple Time Series Analysis, 2nd ed., Springer, Berlin.
  10. McCoy, E. J. and Walden, A. T. (1996). Wavelet analysis and synthesis of stationary long-memory processes, Journal of Computational Graphical Statistics, 5, 26-56. https://doi.org/10.2307/1390751
  11. Nason, G. P. and von Sachs, R. (1999). Wavelets in time series analysis, Philosophical Transactions of the Royal Society, London A, 357, 2511-2526. https://doi.org/10.1098/rsta.1999.0445
  12. Nason, G. P. and Silverman, B. W. (1995). The stationary wavelet transform and some statistical applications, In Wavelets and statistics (A. Antoniadis and G. Oppenheim, ed.), Springer Lecture Notes in Statistics, No. 103, 281-300.
  13. Oh, H.-S., Naveau, P. and Lee, G.-H. (2001). Polynomial boundary treatment for wavelet regression, Biometrika, 88, 291-298. https://doi.org/10.1093/biomet/88.1.291
  14. Pfaff, B. (2008). VAR, SVAR and SVEC models: Implementation within R package vars, Journal of Statistical Software, 27, 1-32.
  15. Silverman, B. W. (2005). The EbayesThresh package: Empirical Bayes thresholding and related methods.
  16. Vidakovic, B. (1999). Statistical Modeling by Wavelets, Wiley, New York.