DOI QR코드

DOI QR Code

Single crystal growth of ZnWO4 by the Czochralski method and characterization

Czochralski법에 의한 ZnWO4 단결정 성장 및 특성분석

  • Lim, Chang-Sung (Dept. of Advanced Materials Science & Engineering, Hanseo University)
  • 임창성 (한서대학교 신소재공학과)
  • Received : 2010.03.15
  • Accepted : 2010.03.29
  • Published : 2010.04.25

Abstract

Single crystals of $ZnWO_4$ with [100], [010] and [001] directions were successfully grown by the Czochralski method. The seed crystals for the single crystal growth of $ZnWO_4$ could be induced by the crystal growth using platinum wires applied by the capillary action from the melt. The growth conditions in each direction were investigated in terms of the variations of rotation speed, pulling rate and diameter of the grown crystals. The formation of cracking in the grown crystals during the cooling process could be prevented by annealing effect. The growth directions of the grown crystals were determined using Laue back reflection. The microscopic characteristics of the grown crystals in each direction were discussed, and their physical properties were evaluated for hardness, thermal expansion coefficients and dielectric constants.

Keywords

$ZnWO_4$ single crystals;Czochralski method;growth conditions;physical properties

References

  1. F. Yang and C. Tu, Materials Letters, 61, 3056-3058 (2007). https://doi.org/10.1016/j.matlet.2006.10.074
  2. I. Foeldvari, A. Peter, S. Keszthelyi-Landori, R. Capelletti, I. Cravero and F. Schmidt, J. Crystal Growth, 79, 714-719(1986). https://doi.org/10.1016/0022-0248(86)90543-9
  3. P. F. Schofield, K. S. Knight and G. Cressey, J. Mat. Sci., 31, 2873-2877(1996). https://doi.org/10.1007/BF00355995
  4. M Nikl, K. Blazek, G. P. Pazzi, A. Vedda, M. Martini, M. Kobayashi, K. Shimamura and T. Fukuda, J. Mat. Sci., 35, 4879-4883(2000). https://doi.org/10.1023/A:1004809804206
  5. S. O'Hara and G. M. Mcmanus, J. Appl. Phys., 36, 1741-1746(1965) . https://doi.org/10.1063/1.1703120
  6. A. Kornylo, A. Jankowska-Frydel, B. Kuklinski, M. Grinberg, N. Kruyiak, Z. Moroz and M. Pashkowsky, Radiation Measurement, 38, 707-716(2004). https://doi.org/10.1016/j.radmeas.2004.03.003
  7. X. Jiang, J. Ma, J. Liu, Y. Ren, B. Lim, J. Tao and X. Zhu, Materials Letters, 61, 4595-4598(2007). https://doi.org/10.1016/j.matlet.2007.02.058
  8. V. Nagirnyi, L. Jonsson, M. Kirm, A. Kotlov,, A. Lushchik, I. Martinson, A. Watterich, B. I. Zadneprovski, Radiation Measurement, 38, 519-522(2004). https://doi.org/10.1016/j.radmeas.2004.01.024
  9. R. O. Keeling, Acta Cryst., 10, 209-213(1957). https://doi.org/10.1107/S0365110X57000651
  10. W. G. Nilsen and S. K. Kurz, Phys. Review, 136, A262-266(1964) . https://doi.org/10.1103/PhysRev.136.A262
  11. L. Malicsko, A. Peter and W. Erfurth, J. Crystal Growth, 151, 127-133(1995). https://doi.org/10.1016/0022-0248(95)00015-1
  12. A. Watterich, A. Hofstaetter, R. Wuerz, A. Scharmann and O.R.Gilliam, J. Phys.: Condens. Matter, 10, 205-213(1998). https://doi.org/10.1088/0953-8984/10/1/023
  13. A. Watterich, G. J. Edwards, O. R. Gilliam and L. A. Kappers, J. Phys.: Condens. Matter, 8, 10659-10667 (1996). https://doi.org/10.1088/0953-8984/8/49/050
  14. M. Bonanni, L. Spanhel, M. lerch, E. Fueglein and G. Mueller, Chem. Mater., 10, 304-310(1998). https://doi.org/10.1021/cm9704591