DOI QR코드

DOI QR Code

Study on the immobilization of plant glutathione S-transferase for development of herbicide detection kit

제초제 검출 키트 개발을 위한 식물 해독효소 고정화 연구

  • Received : 2010.02.10
  • Accepted : 2010.02.16
  • Published : 2010.04.25

Abstract

Glutathione S-transferase is known to play a crucial role in detoxification in many cases. To develop a herbicide detection biosensor, we in this study attempted to immobilize glutathione S-transferase enzyme on solid supports, polystyrene and agarose, and Na-alginate. These matrixes were attractive materials for the construction of biosensors and might also have utility for the production of immobilized enzyme bioreactors. We also compared the activities of glutathione-S-transferase immobilized OsGSTF3 and free OsGSTF3. The specific activity of the free enzyme in solution was 3.3 higher than the immobilized enzyme. These results suggest that 50% of the enzyme was bound with the catalytic site in polystyrene-alkylamine bead and immobilized enzymes showed 80% remaining activity until 3 times reuse.

Keywords

biosensor;glutathione S-transferase;herbicide detoxification;protein immobilization

References

  1. D. Weinrich, P. Jonkheijm, C. Niemeyer and H. Waldmann, Angew. Chem. Int. Edit., 48, 7744-7751(2009). https://doi.org/10.1002/anie.200901480
  2. D. Brady and J. Jordaan, Biotechnol. Lett., 31, 1639-1650(2009). https://doi.org/10.1007/s10529-009-0076-4
  3. U. Hanefeld, L. Gardossi and E. Magner, Chem. Soc. Rev., 38, 453-468(2009). https://doi.org/10.1039/b711564b
  4. Y. Kumada, Y. Tokunaga, H. Imanaka, K. Imamura, T. Sakiyama, S. Katoh and K. Nakanishi, Biotechnol. Prog., 22, 401(2006). https://doi.org/10.1021/bp050331l
  5. N. Allocati, L. Federici, M. Masulli and C. D. Ilio, FEBS J., 276, 58(2009). https://doi.org/10.1111/j.1742-4658.2008.06743.x
  6. D. P. Dixon, A. Lapthorn and R. Edwards. Genome Biol., 3, REVIEWS3004. (2002)
  7. R. N. Armstrong, Chem. Res. Toxicol., 4, 131(1987).
  8. D. Sheehan, G. Meade, V. M. Foley and C. A. Dowd, Biochem. J., 360, 1(2001). https://doi.org/10.1042/0264-6021:3600001
  9. W. R. Pearson, Methods Enzymol., 401, 186(2005). https://doi.org/10.1016/S0076-6879(05)01012-8
  10. R. Edwards and D. P. Dixon, Methods Enzymol., 401, 169(2005). https://doi.org/10.1016/S0076-6879(05)01011-6
  11. H.-Y. Cho and K.-H. Kong, BioFactors, 30, 281(2007). https://doi.org/10.1002/biof.5520300410
  12. M. Jain, C. Ghanashyam and A. Bhattacharjee, BMC Genomics, 11, 73(2010). https://doi.org/10.1186/1471-2164-11-73
  13. H.-Y. Cho and K.-H. Kong, Pestic. Biochem. Physiol., 83, 29(2005). https://doi.org/10.1016/j.pestbp.2005.03.005
  14. M. M. Bradford, Anal. Biochem., 72, 248(1976). https://doi.org/10.1016/0003-2697(76)90527-3
  15. U. K. Laemmli, Nature., 227, 680(1970). https://doi.org/10.1038/227680a0
  16. L. A. Delouise and B. L. Miller, Anal. Chem., 77, 1950 (2005). https://doi.org/10.1021/ac0486185

Acknowledgement

Supported by : 중앙대학교