DOI QR코드

DOI QR Code

Characterization of Fe-ACF/TiO2 composite and photocatalytic activity for MB Solution under visible light

Fe-ACF/TiO2 복합체의 특성화와 가시광선조건에서 MB 용액의 광촉매활성

  • Received : 2009.06.02
  • Accepted : 2010.04.21
  • Published : 2010.06.25

Abstract

In present study, a conventional sol-gel method was used to prepare Fe-ACF/$TiO_2$ composites, a kind of composite photocatalysts, whose capability was evaluated by degrading methylene blue (MB) solution. The particle size, surface structure, crystal phase and elemental identification of the composites prepared were characterized by BET, SEM, XRD and EDX, respectively. The spectra of MB concentration degraded under visible light were obtained by UV/Vis spectrophotometer. These obtained spectra demonstrated the photocaltalytic activity from removal concentrations of MB. It was considered that these photonic activities are induced by a strong synergetic reaction among ACF, $TiO_2$ and Fe in the composite photocatalysts under visible light.

Keywords

Fe-ACF/$TiO_2$ composite;methylene blue;photo-Fenton;XRD

References

  1. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev, 95, 69-96(1995). https://doi.org/10.1021/cr00033a004
  2. A. L. Linsebigler, G. Q. Lu and J. T. Yates Jr, Chem. Rev, 95, 735-758(1995). https://doi.org/10.1021/cr00035a013
  3. N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima, Chem. Lett, 24, 841-843(1995). https://doi.org/10.1246/cl.1995.841
  4. I. Sopyan, M. Watanabe and S. Murasawa, Chem. Lett, 1, 69-71(1996).
  5. T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Technol, 30, 1275-1281(1996). https://doi.org/10.1021/es950483k
  6. A. Mills and S. L. Hunte, J. Photochem. Photobiol. A : Chem, 108, 1-35(1997). https://doi.org/10.1016/S1010-6030(97)00118-4
  7. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev, 1, 1-35(2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  8. J. Matos, J. Laine and J. M. Herrman, Appl. Catal. B: Environ, 18, 281-291(1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  9. S. X. Liu, Z. P. Qu, X. W. Han and C. L. Sun, Catal. Today, 93, 877-884(2004). https://doi.org/10.1016/j.cattod.2004.06.097
  10. T. Sauer, G. C. Neto, H. J. Jose and R. F. P. M. Moreira, J. Photochem. Photobiol. A: Chem, 149, 147-154(2002). https://doi.org/10.1016/S1010-6030(02)00015-1
  11. C. Galindo, P. Jacques and A. Kalt, J. Photochem. Photobiol. A: Chem, 141, 47-56(2001). https://doi.org/10.1016/S1010-6030(01)00435-X
  12. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti and N. Serpone, Appl. Catal. B: Environ, 15, 147-156(1998). https://doi.org/10.1016/S0926-3373(97)00043-X
  13. M. A. Hasnat, I. A. Siddiquey and A. Nuruddin, Dyes Pigments, 66, 185-188(2005). https://doi.org/10.1016/j.dyepig.2004.09.020
  14. R.W. Matthews, J. Phys. Chem, 91, 3328-3333(1987). https://doi.org/10.1021/j100296a044
  15. W. Zhao, C. C. Chen, X. Z. Li and J. C. Zhao, J. Phys. Chem. B., 106, 5022-5028(2002). https://doi.org/10.1021/jp020205p
  16. W. D. Wang, P. Serp, P. Kalck and J. Luiys Faria, J. Molecular Catal A: Chem., 235, 194-199(2005). https://doi.org/10.1016/j.molcata.2005.02.027
  17. W. Choi, A. Termin and M. Hoffmann, J. Phys. Chem, 98, 13669-13679(1994). https://doi.org/10.1021/j100102a038
  18. W. Shockley and W. T. Read, J. Phys. Rev, 87, 835-842(1952). https://doi.org/10.1103/PhysRev.87.835
  19. A. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Sci, 293, 269-271(2001). https://doi.org/10.1126/science.1061051
  20. Y. B. Xie and C. W. Yuan, Appl. Catal. B: Environ, 46, 251-259(2003). https://doi.org/10.1016/S0926-3373(03)00211-X
  21. Y. B. Xie and C. W. Yuan, Appl. Surf. Sci, 221, 17-24 (2004). https://doi.org/10.1016/S0169-4332(03)00945-0
  22. L. C. Chena, Y. C. Hoa, W. S. Guo, C. M. Huang and T. C. Pan. Electrochimica. Acta, 54, 3884-3891(2009). https://doi.org/10.1016/j.electacta.2009.02.001
  23. B. Pal, M. Sharon and G. Nogami, Mater. Chem. Phy, 59, 254-261(1999). https://doi.org/10.1016/S0254-0584(99)00071-1
  24. Z. M. Wang, G. Yang, P. Biswas, W. Bresser and P. Boolchand, Powder. Technol, 114, 197-204(2001). https://doi.org/10.1016/S0032-5910(00)00321-1
  25. W. C. Oh and M. L. Chen, J. Ceram. Process. Res, 9, 100-106(2008).
  26. K. Nagaveni, M. S. Hedge and G. Madras, J. Phys. Chem. B, 108, 20204-20212(2004). https://doi.org/10.1021/jp047917v
  27. M. L. Chen, S. Lim and W. C. Oh, Carbon. lett, 8, 177-183 (2007). https://doi.org/10.5714/CL.2007.8.3.177
  28. Y. G. Go, F. J. Zhang, M. L. Chen and W. C. Oh, J. Mater. Res, 19, 142-150(2009).
  29. I. Konstantinou and T. Albanis, Appl. Catal. B. Environ, 42, 319-335(2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  30. M. Inagaki, Y. Hirose, T. Matsunage, T. Tsumura and M. Toyoda, Carbon, 41, 2619-2642(2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  31. M. L. Chen, J. S. Bae and W. C. Oh, Analytical. Sci. Technol, 19, 460-467(2006).
  32. B. Tryba, A. W. Morawski and M. Inagaki, Appl. Catal. B: Environ, 46, 203-208(2003). https://doi.org/10.1016/S0926-3373(03)00214-5

Cited by

  1. Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas vol.124, pp.3, 2018, https://doi.org/10.1007/s00340-018-6919-8