Fabrication of ordered porous nanocomposite materials using templating

템플레이팅을 이용한 균일한 크기의 다공성 나노복합소재의 제조

  • Lim, Chang-Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 임창성 (한서대학교 신소재공학과)
  • Received : 2010.03.29
  • Accepted : 2010.04.06
  • Published : 2010.06.25


Pure macroporous silica matrix using a template of polystyrene (PS) was prepared by the sol-gel method. Macroporous Ag-$SiO_2$ composite materials, which were homogeneously dispersed with Ag particles in the macropores, were successfully fabricated. The pure porous silica had ordered pore sizes of 100 nm and 200 nm, which was adjusted under consideration of the template size. The macroporous Ag-$SiO_2$ composite showed the ideal ordered distribution of the pore in case of the adding of 3 wt% $AgNO_3$ under consideration of controlling of the pore size as well as microstructural observation of $AgNO_3$concentration. The macroporous Ag-$SiO_2$ composites had ordered 100 nm and 200 nm pores, and the Ag particles within the matrix showed the size of 15~20 nm.


Nanocomposite;porous;ordered structure;templating


Supported by : 한서대학교


  1. X. M. Yan, G. S. Su and L. Xiong, J. Fuel. Chem. Technol. 37(3), 318-323(2009).
  2. E. Kukulska-Zajac and J. Datka, Micro. & Meso. Mat. 109, 49-57(2008).
  3. J. Datka, E. Kukulska-Zajac and W. Kobyzewa, Cataly. Today, 101, 123-129(2005).
  4. M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka and K. Yamamoto, Biomat. 21, 393-398(2000).
  5. J. Husheng, H. Wensheng, W. Liqiao, W. Bingshe and L. Xuguang, Den. Mat. 24, 244-249(2008).
  6. X. Jiang, S. Chen amd C. Mao, Coll. & Surf. A: Physicochem. Eng. Asp. 323, 104-110(2008).
  7. Y. Le, P. Hou, J. Wang amd J. F. Chen, Mat. Chem. & Phys. 120, 351-355(2010).
  8. M. Zhu, G. Qian, Z. Hong, Z. Wang, X. Fan and M. Wang, J. Phys. Chem. Solids, 66, 748-752(2005).
  9. J. L. Gong, J. H. Jiang, Y. Liang, G. L. Shen and R. Q. Yu, J. Coll. Interf. Sci. 298, 752-756(2006).
  10. J. H. Son, H. Y. park, D. P. Kang, and D. S. Bae, Coll. & Surf. A: Physicochem. Eng. Asp. 313-314, 105-107(2008).
  11. W. Chen, J. Zhang. L. Shi, Y. Di, Q. Fang and W. Cai, Com. Sci. & Tech. 63, 1209-1212(2003).
  12. S. Karski, I. Witonska, J. Rogowski and J. Goluchowska, J. Mole. Catal. A: Chem. 240, 155-163(2005).
  13. V. V. hardikar and E. Matijevic, J. Coll. & Inter. Sci. 221, 133-136(2000).
  14. A. Wang, H. Wang, C. Zhou, Z. Du, S. Zhu and S. Shen, Chi. J. Chem. Eng. 16(4), 612-619(2008).
  15. J. C. Flores, V. Torres, M. Popa, D. Crespo and J. M. Calderon-Moreno, J. Non-cry. Sol. 354, 5435-5434 (2008).
  16. M. Zhu, G. Qian, Z. Wang and M. Wang, Mat. Chem. Phys. 100, 333-336(2006).
  17. Y. H. Kim, D. K. Lee and Y. S. Kang, Coll. & Surf. A: Physicochem. Eng. Aspects, 257-258, 273-276(2005).
  18. X. Bingshe, N. Mei, W. Liqiao, H. Wensheng and L. Xuguang, J. Photochem. Photobio. A: Chem. 188, 98-105(2007).
  19. Y. Hotta, P. C. A. Alberius and L. Bergstrom, J. Mat. Chem. 13, 496-501(2003).
  20. N. Braconnier, C. A. Paez, S. Lambert, C. Alie, C. Henrist, D. Poelman, J. P. Pirard, R. Cloots and B. Heinrichs, Micro. & Meso. Mat. 122, 247-254(2009).
  21. N. Mei, L. Xuquang, D. Jinming, J. Husheng, W. Liqiao and X. Bingshe, Carbohy. Poly. 78, 54-59(2009).
  22. K. Xu, J. X. Wang, X. L. Kang and J. F. Chen, Mat. Lett. 63, 31-33(2009).
  23. S. Tang, S. Zhu, H. Lu and X. Meng, J. Sol. Sta. Chem. 181, 587-592(2008).
  24. A. A. Scalisi, G. Compagnini, L. D. Urso and O. Puglisi, App. Surf. Sci. 226, 237-241(2004).
  25. Y. Borenszten, P. De Andres, R. Monreal, J. lopez-Rios and F. Flores, Phys. Rev. B33, 2828-2830(1986).