DOI QR코드

DOI QR Code

Determination and preconcentration of Cu(II) using microcrystalline p-Dichlorobenzene loaded with salicylaldoxime

Salicylaldoxime이 내포된 p-Dichlorobenzene 미세결정을 이용한 Cu(II)의 예비농축 및 정량

  • Received : 2010.01.15
  • Accepted : 2010.05.03
  • Published : 2010.06.25

Abstract

A technique for the determination of trace Cu(II) in various real samples by FAAS after the column preconcentration onto p-dichlorobenzene-SA adsorbent, which is microcrystalline p-dichlorobenzene loaded with salicylaldoxime (SA) has been developed. Several experimental conditions such as pH of the sample solution, the amount of chelating agent salicylaldoxime, the amount of adsorbent p-dichlorobenzene-SA, and flow rate of sample solution were optimized. The interfering effects of various concomitant ions were investigated. $CN^-$ interfered more seriously than any other ions. However, the interference by $1\;{\mu}g\;mL^{-1}\;CN^-$ could be overcome completely by controlling the concentration of Ni(II) to $20\;{\mu}g\;mL^{-1}$. The linear range, correlation coefficient ($R^2$) and detection limit obtained by this technique were $3.0\sim100\;ng\;mL^{-1}$, 0.9901, and $3.1\;ng\;mL^{-1}$, respectively. For validating this technique, the aqueous samples (wastewater, reservoir water and stream water) and the food samples (orange juice, fresh egg and skim milk) were used. Recovery yields of 93~104% were obtained. These measured mean values were not differents from ICP-MS data at 95% confidence level. The good results were obtained from the experiments using the rice flour certified reference material (CRM) sample. Based on the experimental results, it was found that this technique could be applied to the preconcentration and determination of Cu(II) for various real samples.

Keywords

preconcentration;Cu(II);p-dichlorobenzene;salicylaldoxime

References

  1. C. N. Sawyer, P. L. McCarty, and G. F. Parkin, "Chemistry for Environmental Engineering", 4th ed., 634, McGraw-Hill, New York, U.S.A., 1966.
  2. D. Vendramini, V. Grassi and E. A. G. Zagatto, Anal. Chim. Acta, 570, 124-128(2006). https://doi.org/10.1016/j.aca.2006.04.008
  3. A. B. Tabrizi, J. Hazard Mater., 139, 260-264(2007). https://doi.org/10.1016/j.jhazmat.2006.06.024
  4. A. M. H. Shabani, S. Dadfarnia and Z. Dehghani, Talanta, 79, 1066-1070(2009). https://doi.org/10.1016/j.talanta.2009.02.008
  5. M. A. Belarra, C. Crespo, M. Resano and J. R. Castillo, Spectrochim. Acta B. 55, 865-874(2000). https://doi.org/10.1016/S0584-8547(00)00217-2
  6. E. L. Silva, P. S. Roldan and M. F. Gine, J. Hazard Mater,, 171, 1133-1138(2009). https://doi.org/10.1016/j.jhazmat.2009.06.127
  7. T. Kagawa, M. Ohno, T. Seki and K. Chikama, Talanta, 79, 1001-1005(2009). https://doi.org/10.1016/j.talanta.2009.02.017
  8. M. Lin, M. Cho, W. Choe, Y. Son and Y. Lee, Electrochim. Acta, 54, 7012-7017(2009). https://doi.org/10.1016/j.electacta.2009.07.025
  9. B. C. Janegitz, L. H. Marcolino-Junior, S. P. Campana-Filho, R. C. Faria and O. Fatibello-Filho, Sensor Actuat. B-Chem., 142, 260-266(2009). https://doi.org/10.1016/j.snb.2009.08.033
  10. W. Zeng, Y. Chen, H. Cui, F. Wu, Y. Zhu and J. S. Fritz, J. Chromatogr. A, 1118, 68-72(2006). https://doi.org/10.1016/j.chroma.2006.01.065
  11. K. Chayama and E. Sekido, Anal. Chim, Acta. 248, 511-515(1991). https://doi.org/10.1016/S0003-2670(00)84669-3
  12. M. Ghaedi, F. Ahmadi and M. Soylak, J. Hazard Mater., 147, 226-231(2007). https://doi.org/10.1016/j.jhazmat.2006.12.070
  13. F. Zie, X. Lin, X. Wu and Z. Xie, Talanta, 74, 836-843(2008). https://doi.org/10.1016/j.talanta.2007.07.018
  14. N. Pourreza and R. Hoveizavi, Anal. Chim. Acta, 549, 124-128(2005). https://doi.org/10.1016/j.aca.2005.06.037
  15. E. A. Moawed and M. F. El-Shahat, React. Funct. Polym., 66, 720-727(2006). https://doi.org/10.1016/j.reactfunctpolym.2005.10.026
  16. V. A. Lemos, M. A. Bezerra and F. A. C. Amorim, J. Hazard Mater., 157, 613-619(2008). https://doi.org/10.1016/j.jhazmat.2008.01.027
  17. S. L. C. Ferreira and C. F. de Brito, Anal. Sci., 15, 189-172(1999). https://doi.org/10.2116/analsci.15.189
  18. M. Satake, T. Nagahiro and B. K. Puri, J. Anal. At, Spectrom. 7, 183-186(1992). https://doi.org/10.1039/ja9920700183
  19. T. J. Lee and H. S. Choi, Bull. Korean Chem. Soc. 23, 861-864(2002). https://doi.org/10.5012/bkcs.2002.23.6.861
  20. D. A. Skoog, F. J. Holler and S. R. Crouch, "Principles of Instrumental Analysis" 6th Ed., 20, Thomson Brooks/Cole, U.S.A., 2007.
  21. D. C. Harris, "Quantitative Chemical Analysis" 7th Ed., 60, W. H. Freeman, U.S.A., 2007.
  22. J. A. Dean, "Lange's Handbook of Chemistry", 15th ed., 8.9, McGraw-Hill, U.S.A., 1999.
  23. T. Tshuma, G. Alarcon-Angeles, E. Palacios-Beas, R. Vargas-Garcia, M. T. Ramirez-Silva and A. Rojas-Harnandez, Spectrochim. Acta A, 66, 879-883(2007). https://doi.org/10.1016/j.saa.2006.05.004

Cited by

  1. Color Stability of the Bioplastic containing Sorghum Extract Chelated by Fe(II) and Cu(II) vol.27, pp.1, 2015, https://doi.org/10.5764/TCF.2015.27.1.62