DOI QR코드

DOI QR Code

Distribution and emission source of PAHs in ambient air of Seoul

서울지역 대기 중의 PAHs 분포 특성 및 발생원

  • Park, Jin-Soo (National Institute of Environmental Reserch of Environmental Research) ;
  • Yoon, Seong-Kyu (Civil & Environmental System Engineering, Hanyang University) ;
  • Bae, Woo-Keun (Civil & Environmental System Engineering, Hanyang University)
  • 박진수 (국립환경과학원 환경건강위해성연구부 화학물질거동연구과) ;
  • 윤성규 (한양대학교 건설환경공학과) ;
  • 배우근 (한양대학교 건설환경공학과)
  • Received : 2010.04.07
  • Accepted : 2010.04.26
  • Published : 2010.06.25

Abstract

Air samples were collected and analyzed to investigate regional level of PAHs and its emission sources. The average concentrations of PAHs in the suburban (Gwanak) and in the urban (Seodaemun) area were $16.52\;ng/m^3$ and $59.1\;ng/m^3$, respectively. Phenanthrene, fluoranthene, pyrene, and fluorene were predominant PAHs species, as their sum contributed to 55.6% and 60.8% of the total PAHs, respectively. The possible major source of PAHs was suspect to be the combustion of diesel fueled vehicles in both areas, particularly for Seodaemun.

Keywords

PAHs;source;ambient air

References

  1. S. S. Park, Y. J. Kim and C. H. Kang, Atmos. Environ., 36, 917-2924(2002). https://doi.org/10.1016/S1352-2310(01)00512-X
  2. M. Dimashki, L. H. Lim, R. M. Harrison and S. Harrad, Environ Sci Technol, 35, 2264-2267(2001). https://doi.org/10.1021/es000232y
  3. T. Harner and T. F. Bidleman, Envion. Sci. Technol., 32, 1494-1502(1998). https://doi.org/10.1021/es970890r
  4. R. Lohmann, T. Harner, G. O. Thomas and K. C. Jones, Environ. Sci. Technol., 34, 4943-4951(2000). https://doi.org/10.1021/es9913232
  5. C. L. Gigliotti, J. Dachs, E. D. Neison, P. A. Brunciak and S. J. Eisenreich, Environ. Sci. Technol., 34, 3547-3554(2000). https://doi.org/10.1021/es9912372
  6. G. C. Fang, C. N. Chang, Y. S. Wu, P. P. C. Fu, K. F. Chang and D. G. Yang, Sci. Total Environ., 232, 177-184(1999). https://doi.org/10.1016/S0048-9697(99)00092-3
  7. Y. C. Chan, R. W. Simpson, G. H. Mctainsh and P. D. Vowles, Atmos. Environ., 31, 3773-3785(1997). https://doi.org/10.1016/S1352-2310(97)00213-6
  8. P. D. Hien, N. T. Binh, Y. Truong, N. T. Ngo and L. N. Sieu, Atmos. Environ., 35, 2669-2678(2001). https://doi.org/10.1016/S1352-2310(00)00574-4
  9. C. Venkataraman, S. Thomas and P. Kulkarni, J. Aerosol Sci., 30, 759-770(1999). https://doi.org/10.1016/S0021-8502(98)00761-7
  10. T. V. Nune and C. A. Pio, Atmos. Environ., 27, 1339-1346(1993). https://doi.org/10.1016/0960-1686(93)90259-2
  11. T. F. Bidleman, W. N. Billings and W. T. Foreman, Envion. Sci. Technol., 20, 1038-1043(1986). https://doi.org/10.1021/es00152a013
  12. J. F. Pankow, J. M. Storey and H. Yamasaki, Envion. Sci. Technol., 27, 2220-2226(1993). https://doi.org/10.1021/es00047a032
  13. G. A. Patterson and J. Wagman, J. Aerosol Sci., 8, 269-279(1977). https://doi.org/10.1016/0021-8502(77)90046-5
  14. J. Lin, K. E. Noll and T. M. Holsen, Aerosol Sci. Tech., 20, 239-252(1994). https://doi.org/10.1080/02786829408959680
  15. P. Lestari, A. K. Oskouie and K. E. Noll, Atmos. Environ., 37, 2507-2516(2003). https://doi.org/10.1016/S1352-2310(03)00151-1
  16. M. J. Kleeman and G. R. Cass, Atmos. Environ., 32, 2803-2816(1998). https://doi.org/10.1016/S1352-2310(98)00001-6
  17. J. J. Schauer, M. J. Kleeman, G. R. Cass and B. R. T. Simoneit, Envion. Sci. Technol., 36, 1169-1180(2002). https://doi.org/10.1021/es0108077
  18. M. J. Mysliwiec and M. J. Kleeman, Envion. Sci. Technol., 36, 5376-5384(2002). https://doi.org/10.1021/es020832s
  19. M. Zheng, G. R. Cass, J. J. Schauer and E. S. Edgerton, Envion. Sci. Technol., 36, 2361-2371(2002). https://doi.org/10.1021/es011275x
  20. P. K. H. Lee, J. R. Brook, E. D. Zlotorzynska, S. A. M. Mabury, Environ. Sci. Technol., 37, 4831-4840(2003). https://doi.org/10.1021/es026473i
  21. R. K. Larsen and J. E. Baker, Environ. Sci. Technol., 37, 873-1881(2003). https://doi.org/10.1021/es025947a
  22. A. M. Caricchia, M. P. Chiavarini and M. Pezza, Atmos. Environ., 33, 3731-3738(1999). https://doi.org/10.1016/S1352-2310(99)00199-5
  23. R. Abrantes, J. V. Assuncao, and C. R. Pesquero, Atmos. Environ., 38, 1631-1640(2004). https://doi.org/10.1016/j.atmosenv.2003.11.012
  24. I. G. Kavouras, P. Koutrakis, M. Tsapakis, E. Lagoudaki, E. G. Stephanou, D. V. Baer and P. Oyola, Environ. Sci. Technol., 35, 2288-2294(2001). https://doi.org/10.1021/es001540z
  25. M. Mandalakis, M. Tsapakis, A.Tsoga, and E. G. Stephanou, Atmos. Environ., 36, 4023-4035(2002). https://doi.org/10.1016/S1352-2310(02)00362-X
  26. R. M. Dickhut, E. A. Canuel, K. E. Gustafson, K. Liu, K. M. Arzayus, S. E. Walker, G. Edgecombe, M. O. Gaylker and E. H. Macdonald, Environ. Sci. Techol., 34, 4635-4640(2000). https://doi.org/10.1021/es000971e
  27. M. F. Simcik, T. P. Franz, H. Zhang and S. J. Eisenreich, Environ. Sci. Technol., 32, 251-257(1998). https://doi.org/10.1021/es970557n

Cited by

  1. The Qualitative Rate Estimation of PAHs in Carbon Compounds of Particles in Vehicles Exhaust Gas vol.30, pp.5, 2014, https://doi.org/10.5572/KOSAE.2014.30.5.449
  2. Speciation and source identification of organic compounds in PM 10 over Seoul, South Korea vol.144, 2016, https://doi.org/10.1016/j.chemosphere.2015.10.041
  3. Regulation Standard of Fine Particles and Control Techniques of Emission Sources vol.29, pp.4, 2013, https://doi.org/10.5572/KOSAE.2013.29.4.486
  4. Study on analysis of PAHs in consumer products vol.27, pp.4, 2014, https://doi.org/10.5806/AST.2014.27.4.201