Antifungal Activity of Bacillus sp. BCNU 2002 against the Human Pathogens

인체 병원성 진균에 대한 Bacillus sp. BCNU 2002의 항진균 효과

  • Received : 2009.12.29
  • Accepted : 2010.04.23
  • Published : 2010.04.28

Abstract

An endospore-forming, rod-shaped bacterium was isolated from forest soil samples collected at the Taebaek mountain of Gangwon province, Korea, and taxonomically characterized by physiological, biochemical and phylogenetic methods. Its 16S rRNA sequences showed the maximum similarity of 97% with B. amyloliquefaciens. In addition, the isolate BCNU 2002 was determined to have the ability to produce enzymes such as amylase, protease, gelatinase and catalase. The in vitro antifungal activity of Bacillus sp. BCNU 2002 was also examined against human pathogenic fungi such as Aspergillus niger, Candida albicans, Epidermophyton floccosum, Saccharomyces cerevisiae, Trichophyton mentagrophytes and Trichophyton rubrum. A maximum production level of antifungal substances of Bacillus sp. BCNU 2002 was achieved under aerobic incubation at $28^{\circ}C$ for 7 days in LB broth. BCNU 2002 showed strong antifungal activities against T. mentagrophytes and T. rubrum with the range of percentage inhibition from 56.25 to 63.23%. It was also confirmed that ethylacetate extract of cultured broth showed a strong antifungal activity against A. niger, C. albicans, S. cerevisiae and T. rubrum by agar diffusion method. The peptide fraction also exhibited broad antifungal spectrum against various pathogenic fungi. The minimum inhibitory concentration values for active extracts ranged between 125 ${\mu}g$/mL and 1000 ${\mu}g$/mL.

Keywords

Acknowledgement

Supported by : 교육과학기술부, 한국산업기술진흥원

References

  1. Kumar. A., P. Saini, and J. N. Shrivastava (2009) Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian J. Exp. Biol. 47: 57-62.
  2. Liu, Y., Z. Chen, T. B. Ng, J. Zhang, M. Zhou, F. Song, F. Lu, and Y. Liu (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28: 553-559. https://doi.org/10.1016/j.peptides.2006.10.009
  3. Tawara, S., S. Matsumoto, T. Hirose, Y. Matsumoto, S. Nakamoto, and M. Mitsuno (1989) In vitro antifungal synergism between pyrrolnitrin and clotrimazole. Med. Mycol. 30: 202-210. https://doi.org/10.3314/jjmm1960.30.202
  4. White, T., K. Marr, and R. Bowden (1998) Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382-402.
  5. Chomnawang, W. T., S. Surassmo, V. S. Nukoolkarn, and W. Gritasnapan (2005) Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 101: 330-333. https://doi.org/10.1016/j.jep.2005.04.038
  6. Kane, J. and R. C. Summerbel (1999) Trychophyton, Microsporm, Epidermophyton, and agents of superficial mycosis. pp. 1275-1294. In: P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). Manual of Clinical Microbiology. 7nd ed., ASM Press, Washington D.C., USA.
  7. Weitzman, I. and R. C. Summerbel (1995) The dermatophytes. Clin. Microbiol. Rev. 8: 240-159.
  8. Favre, B., B. Hofbauer, K. S. Hildering, and N. S. Ryder (2003) Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbiol. 41: 4817-4819. https://doi.org/10.1128/JCM.41.10.4817-4819.2003
  9. Gupta, A. K., Y. Kohli, A. Ki, J. Faergemann, and R. C. Summerbell (2000) In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazol, itaconazol and terbinafine. Br. J. Dermatol. 142: 758-765. https://doi.org/10.1046/j.1365-2133.2000.03294.x
  10. Wei, Q. L., S. S. Zhang, J. Gao, W. H. Li, L. Z. Xu, and Z. G. Yu (2006) Synthesis and QSAR studies of novel triazole compounds containing thioamide as potential antifungal agents. Biol. Med. Chem. 14: 7146-7153. https://doi.org/10.1016/j.bmc.2006.06.065
  11. Jo, J. H., H. S. Jang, H. C. Ko, M. B. Kim, C. K. Oh, Y. W. Kwon, and K. S. Kwon (2005) Pustular psoriasis and the Kobner phenomenon caused by allergic contact dermatitis from zinc pyrithionecontaining shampoo. Contact Dermatitis 52: 142-144. https://doi.org/10.1111/j.0105-1873.2005.00528.x
  12. Larone, D. H. (1995) Medically Important Fungi. 3rd ed., p. 9. ASM Press, Washington D.C., USA.
  13. Shadomy, S., H. J. Shadomy, and G. E. Wagner (1977) Fungicides in medicine, pp. 437-461. In: M. R. Siegel, and D. S. Hugh (eds.). Antifungal Compounds. Marcel Decker, New York, USA.
  14. Vikmon, M., A. Stadler-Szoke, and J. Szejtli (1985) Solubilization of amphotericin B with $\gamma$-cyclodextrin. J. Antibiotics 38: 1822-1824. https://doi.org/10.7164/antibiotics.38.1822
  15. Ruhnke, M., A. Schmidt-Westhausen, E. Engelmann,and M. Trautmann (1996) Comparative evaluation of three antifungal susceptibility test methods for Candida albicans isolates and correlation with response to fluconazole therapy. J. Clin. Microbiol. 34: 3208-3211.
  16. Tortorano, A. M., M. A. Viviani, F. Barchiesi, D. Arzeni, A. L. Rigoni, and M. Cogliat. (1998) Comparison of three methods for testing azole susceptibilities of Candida albicans strains isolated sequentially from oral cavities of AIDS patients. J. Clin. Microbiol. 36: 1578-1583.
  17. Joo, W. H., S. J. Han, Y. L. Choi, and Y. K. Jeong (2004) Antifungal compound produced by Bacillus sp. TMB 912. J. Life Sci. 14: 193-197. https://doi.org/10.5352/JLS.2004.14.1.193
  18. Kim, M. H., H. S. Ko, Y. M. Yool, and H. S. Kim (2008) Isolation and characterization of microorganisms with broad antifungal activity against phytopathogenic fungi. Kor. J. Biotechnol. Bioeng. 23: 219-225.
  19. Park, S. M., J. S. Lee, C. D. Park, J. H. Lee, H. J. Jung, and T. S. Yu (2006) Selection and antifungal activity of antagonistic bacterium Bacillus subtilits KMU-13 against cucumber scab, Cladosporium cucumerinum KACC 40576. Kor. J. Biotechnol. Bioeng. 21: 42-48.
  20. Zhang, B., C. Xie, and X. Yang (2008) A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides 29: 350-355. https://doi.org/10.1016/j.peptides.2007.11.024
  21. Saito, N. and M. Nei (1987) The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79: 426-434.
  22. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  23. Whipps, J. M. (1987) Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol. 107: 127-142. https://doi.org/10.1111/j.1469-8137.1987.tb04887.x
  24. National Committee for Clinical Laboratory Standards. (2004) Methods for antimicrobial susceptibility testing of anaerobic acteria: Approved Standard. 6nd ed., Vol. 24, NCCLS Document M11-A6. Pennsylvania, USA.
  25. National Committee for Clinical Laboratory Standards (2002) Reference methods for broth dilution antifungal susceptibility testing of yeasts: Approved Standard. 2nd ed., Vol. 22, NCCLS Document M27-A2. Pennsylvania. USA.
  26. Zhao, Z., Q. K. Wang, K. Brian, C. Liu, and Y. Gu (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour. Technol. 101: 292-297. https://doi.org/10.1016/j.biortech.2009.07.071
  27. Wong, J. H., J. Hao, Z. Cao, M. Qiao, H. Xu, Y.Bai, and T. B. Ng (2008) An antifungal protein from Bacillus amyloliquefaciens. J. Appl. Microbiol. 105: 1888-1898. https://doi.org/10.1111/j.1365-2672.2008.03917.x
  28. Kim, P. I. and K. C. Chung (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET 0908. FEMS Microbiol. Lett. 234: 177-183. https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
  29. Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  30. Favre, B., B. Hofbauer, K. S. Hildering, and N. S. Ryder (2003) Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbiol. 41: 4817-4819. https://doi.org/10.1128/JCM.41.10.4817-4819.2003
  31. Lee, S. G. (2003) Antimicrobial effect of Bamboo (Phyllosrachys bambusoides) essential oil on Trichophyton and Pityrosporum. J. Food. Hyg. Safety 18: 113-117.
  32. Ha, Y. M., B. B. Lee, H. J. Bae, K. M. Je, S. R. Kim, J. S. Choi, and I. S. Choi (2009) Antimicrobial activity of grapefruit seed extract and processed sulfur solution against human skin pathogens. J. Life Sci. 19: 94-100. https://doi.org/10.5352/JLS.2009.19.1.094
  33. Lee, N. W., C. S. Kim, J. H. Do, I. C. Jung, H. W. Lee, and D. H. Yi (1998) Isolation and identification of Bacillus sp. LAM 97-44 producing antifungal antibiotics. Agric. Chem. Biotechnol. 41: 208-212.