DOI QR코드

DOI QR Code

Chemical Constituents of Domestic Quercus spp. Barks

국내산 참나무속 수종 수피의 추출성분

  • Kim, Jin-Kyu (Institute of Natural Medicine, Hallym University) ;
  • Kwon, Dong-Joo (Dept. of Forest Biomaterials Engineering, Kangwon National University) ;
  • Lim, Soon-Sung (Institute of Natural Medicine, Hallym University) ;
  • Bae, Young-Soo (Dept. of Forest Biomaterials Engineering, Kangwon National University)
  • 김진규 (한림대학교 천연의약연구소) ;
  • 권동주 (강원대학교 산림바이오소재공학과) ;
  • 임순성 (한림대학교 천연의약연구소) ;
  • 배영수 (강원대학교 산림바이오소재공학과)
  • Received : 2010.04.27
  • Accepted : 2010.07.08
  • Published : 2010.07.25

Abstract

This study was carried out to investigate the chemotaxonomical correlation and chemical constituents of domestic Quercus spp. barks. The barks of Q. mongolica, Q. aliena, Q. serrata, Q. acutissima, Q. dentata, and Q. variabilis were collected in the experimental forest of Kangwon National University. The combined extracts were successively fractionated with n-hexane, methylene chloride and ethyl acetate using a separation funnel. A portion of the ethyl acetate and H2O soluble materials of each species were chromatographed on a Sephadex LH-20 column using various aqueous MeOH and EtOH-hexane as washing solvents. Spectrometric analysis such as NMR and MS, including TLC, were performed to characterize the structures of the isolated compounds. Ellagic acid (0.03 g), (+)-catechin (4.59 g), taxifolin (3.35 g), and glucodistylin (20.52 g) were isolated from Q. mongolica bark. Gallic acid (0.18 g), (+)-catechin (8.52 g), (+)-gallocatechin (0.09 g), taxifolin (0.54 g), and glucodistylin (3.28 g) were characterized from Q. acutissima bark. Gallic acid (0.38 g), ellagic acid (0.11 g), (+)-catechin (2.01 g), (+)-gallocatechin (0.12 g), and glucodistylin (0.39 g) were identified from Q. dentata bark. Ellagic acid (1.51 g), (+)-catechin (21.91 g), and glucodistylin (3.91 g) were purified from Q. aliena bark. Ellagic acid (0.84 g), (+)-catechin (0.82 g), taxifolin (4.02 g), and glucodistylin (21.50) were isolated from Q. serrata bark. Gallic acid (0.24 g), caffeic acid (0.05 g), (+)-catechin (0.32 g), and glucodistylin (0.65 g) were purified from Q. variabilis bark. (+)-Catechin and glucodistylin were isolated from all the barks. Glucodistylin can be a taxonomic index on Quercus spp.

Acknowledgement

Supported by : 한국연구재단

References

  1. 김민영. 1999. 떡갈나무 추출물의 생물활성에 관한 연구. 경상대학교. 석사학위논문.
  2. 김민영. 2000. 떡갈나무 추출물의 항균활성 및 항산화 활성. 목재공학 28(3): 42-51.
  3. 김석중, 윤광섭, 박희성. 2005. 송화분, 참나무 및 백합화분 추출물의 항산화 효능. 한국식품과학회지 37(5):833-837.
  4. 김성문, 김용호, 김진석, 안문섭, 허수정, 허장현, 한대성. 2000. 신갈나무(Quercus mongolica Fisch) 목초액의 제초활성. 한국농약과학회지 4(3): 82-88.
  5. 김진규, 배영수. 2006. 국내산 참나무속 수종 잎의 추출 성분. 목재공학 34(6): 61-71.
  6. 김태욱. 한국의 수목. 1996. 교학사 pp. 64-80.
  7. 문관심. 1999. 약초의 성분과 이용. 일월서각 pp. 172-175.
  8. 손석용, 권기철, 정택상. 2002. 경기도 광주시 태화산 신갈나무림의 생산구조와 생산성. 한국임산에너지학회지 21(1): 76-82.
  9. 송정호. 2002. RA PD와 형태적 특성에 의한 굴참나무 천연집단의 유전변이에 관한 연구. 강원대학교 대학원 박사학위 논문 pp. 1-4.
  10. 신두호, 조정순. 1991. 상수리(橡實)의 각종 용매 추출물이 linoleic acid의 항산화력에 미치는 영향. 한국유화학회지 8(1): 79-83.
  11. 우원식. 1999. 천연물화학 연구법. 서울대학교출판부 pp. 151-155.
  12. 이학주. 2003. 국내산 수목의 추출성분. 산림. 7월호 pp.78-80.
  13. 이학주, 이성숙, 최돈하, 加藤厚. 2001. 수목추출물의 생리활성에 관한 연구(VI). - 산벚나무 심재의 Flavonoids- 목재공학 29(2): 133-139.
  14. 임업연구원. 1990. 참나무 資源의 綜合利用 開發에 關한 硏究(III). 과학기술처 특정개발사업 연구 보고서.
  15. 임주훈. 1995. 참나무와 우리문화. 숲과문화 연구회 pp.224-232.
  16. 윤재원. 2003. 갈참나무 추출물의 항균활성 물질탐색 및 분리에 관한 연구. 강원대학교 석사학위논문.
  17. 함연호. 2000. 사시나무속과 버드나무속 주요 수종 수피의 추출성분에 관한 연구. 강원대학교 박사학위논문.
  18. Agrawal, P. K., R. S. Thakur, and M. C. Bansal. 1989. Flavonoids. In: Carbon-13 NMR of flavonoids. ed. P. K. Agrawal. Elsevier. New York. pp. 116-122.
  19. Andray, C. and F. Winternitz. 1982. Structures of verbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistate. Phytochemistry 21(5): 1123-1127. https://doi.org/10.1016/S0031-9422(00)82429-2
  20. Beecher, C. W. W., N. R. Farnsworth, and C. Gyllenhaal. 1989. Pharmacologically active secondary metabolites from Wood. In: Natural Products of Woody Plants II. ed. J. W. Rowe. Springer-Verlag. Berlin. pp. 1059-1164.
  21. Do Khac, D., S. Tran-Van, A. M. Campos, J.-Y. Lallemand, and M. Fetizon. 1990. Ellagic compounds from Diplopanax stachyanthus. Phytochemistry 29(1): 251-256. https://doi.org/10.1016/0031-9422(90)89044-A
  22. Foo, L. Y., Y. Lu, W. C. McNabb, G. Waghor, and J. Ulyatt. 1997. Proanthocyanidins from Lotus Pedunculatus, Phytochemistry 45(8): 1689-1696. https://doi.org/10.1016/S0031-9422(97)00198-2
  23. Harborne, J. B. and T. J. Mabry. 1982. The Flavonoids: Advanced in Research. Chapman and Hall. pp. 24-51.
  24. Miller H. A. and S. H. Lamb. 1985. Oak of north America. Nature-graph Publishers. Inc. pp. 28-129.
  25. Park, W. Y., S. C. Lee, B. T. Ahn, S. H. Lee, J. S. Ro, and K. S. Lee. 1993. Phenolic compounds from Acalypha australis L. Kor. J. Pharmacogn. 24: 20-25.
  26. Shin, D. H., J. S. Cho, and S. T. Jung. 1993. Study on antioxidant effects of acorn (Quercus acutissima Carruth) components. Korean J. Oil Chemists Society. 10(1): 93-101.
  27. Silverstein, R. M. and F. X. Webster. 1998. Spectrometric identification of organic compounds (Sixth Edition). John Wiley & Sons. Inc. pp. 203-216.

Cited by

  1. Flavonoid Constituents of Acacia catechu vol.58, pp.2, 2015, https://doi.org/10.3839/jabc.2015.030