DOI QR코드

DOI QR Code

The Leading Finite Type Coefficients of the Links-Gould Polynomial of a Link

  • Ishii, Atsushi
  • Received : 2008.03.05
  • Accepted : 2009.08.06
  • Published : 2010.03.31

Abstract

We show that the Links-Gould polynomial of a link has finite type coefficients in a multivariate series expansion, and express the leading coefficients in terms of the linking numbers of a link.

Keywords

Links-Gould polynomial;finite type invariant;Vassiliev invariant

References

  1. J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.), 28(1993), 253-287. https://doi.org/10.1090/S0273-0979-1993-00389-6
  2. J. S. Birman and X. S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math., 111(1993), 225-270. https://doi.org/10.1007/BF01231287
  3. D. De Wit, Automatic evaluation of the Links-Gould invariant for all prime knots of up to 10 crossings, J. Knot Theory Ramifications, 9(2000), 311-339. https://doi.org/10.1142/S0218216500000153
  4. D. De Wit, L. H. Kauffman and J. R. Links, On the Links-Gould invariant of links, J. Knot Theory Ramifications, 8(1999), 165-199. https://doi.org/10.1142/S0218216599000110
  5. J. Hoste, The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc., 95(1985), 299-302. https://doi.org/10.1090/S0002-9939-1985-0801342-X
  6. A. Ishii, Algebraic links and skein relations of the Links-Gould invariant, Proc. Amer. Math. Soc., 132(2004), 3741-3749. https://doi.org/10.1090/S0002-9939-04-07481-7
  7. A. Ishii, The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial, Pacific J. Math., 225(2006), 273-285. https://doi.org/10.2140/pjm.2006.225.273
  8. T. Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc., 97(1986), 158-161. https://doi.org/10.1090/S0002-9939-1986-0831406-7
  9. T. Kanenobu, Examples on polynomial invariants of knots and links, Math. Ann., 275(1986), 555-572. https://doi.org/10.1007/BF01459137
  10. T. Kanenobu, Y. Miyazawa and A. Tani, Vassiliev link invariants of order three, J. Knot Theory Ramifications., 7(1998), 433-462. https://doi.org/10.1142/S0218216598000231
  11. J. R. Links and M. D. Gould, Two variable link polynomials from quantum supergroups, Letters in Mathematical Physics, 26(1992), 187-198. https://doi.org/10.1007/BF00420752
  12. H. Murakami, Vassiliev invariants of type two for a link, Proc. Amer. Math. Soc., 124(1996), 3889-3896. https://doi.org/10.1090/S0002-9939-96-03628-3
  13. T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, 29. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
  14. V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, 23-69, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990.