Numerical Plank Problem

Kim, Sung-Guen

  • 투고 : 2009.12.31
  • 심사 : 2010.05.17
  • 발행 : 2010.06.30


Parallel to the plank problem, we investigate the numerical plank problem.


Polynomial plank constants;numerical polynomial plank constants


  1. R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic functions, Bull. Soc. Math. France 106(1978), 3-24.
  2. K.M. Ball, The plank problem for symmetric bodies, Invent. Math. 104(1991), 535-543.
  3. T. Bang, A solution of the plank problem for symmetric bodies, Proc. Amer. Math.Soc. 2(1951), 990-993.
  4. F.F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
  5. Y.S. Choi, D. Garcia, S.G. Kim, and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc. 49(2006), 39-52.
  6. A.M. Davie and T.W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106(1989), 351-356.
  7. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 1999.
  8. S.G. Kim, Polynomial plank constants, Preprint.
  9. Sz. Revesz and Y. Sarantopoulos, Plank problems, polarization and Chebyshev con- stants, J. Korean Math. Soc. 41(2004), 157-174.