DOI QR코드

DOI QR Code

Affine Translation Surfaces with Constant Gaussian Curvature

Fu, Yu;Hou, Zhong-Hua

  • Received : 2010.01.25
  • Accepted : 2010.03.04
  • Published : 2010.06.30

Abstract

We study affine translation surfaces in $\mathbb{R}^3$ and get a complete classification of such surfaces with constant Gauss-Kronecker curvature.

Keywords

Translation surface;Affine Gauss-Kronecker curvature

References

  1. T. Binder, Projectively fiat affine surfaces, J. Geom., 79(2004), 31-45. https://doi.org/10.1007/s00022-003-1674-2
  2. W. Blaschke, Vorlesungen Uber Differentialgeometrie II, Berlin, 1923.
  3. F. Manhart, Die affineminimalruckungfachen, Arch. Math., 44(1985), 547-556. https://doi.org/10.1007/BF01193996
  4. K. Nomizu and T. Sasaki, Affine differential geometry: geometry of affine immersions, Cambridge University Press, 1994.
  5. H. Sun, On affine translation surfaces of constant mean curvature, Kumamoto J. Math., 13(2000), 49-57.
  6. H. Sun and C. Chen, On affine translation hypersurfaces of constant mean curvature, Publ. Math. Debrecen, 64(2004), 3-4, 381-390.

Cited by

  1. On affine translation surfaces in affine space vol.440, pp.2, 2016, https://doi.org/10.1016/j.jmaa.2016.03.066
  2. Polynomial affine translation surfaces in Euclidean 3-space vol.37, pp.3, 2017, https://doi.org/10.5269/bspm.v37i3.32978