DOI QR코드

DOI QR Code

On a q-Extension of the Leibniz Rule via Weyl Type of q-Derivative Operator

Purohit, Sunil Dutt

  • Received : 2008.06.09
  • Accepted : 2010.10.04
  • Published : 2010.12.31

Abstract

In the present paper we define a q-extension of the Leibniz rule for q-derivatives via Weyl type q-derivative operator. Expansions and summation formulae for the generalized basic hypergeometric functions of one and more variables are deduced as the applications of the main result.

Keywords

Weyl fractional q-derivative operator;q-Leibniz rule;basic hypergeometric functions;q-Appell functions;q-Lauricella functions and q-multinomial theorem

References

  1. R. P. Agarwal, Fractional q-derivatives and q-integrals and certain hypergeometric transformations, Ganita, 27(1976), 25-32.
  2. W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin. Math. Soc., 15(1966), 135-140. https://doi.org/10.1017/S0013091500011469
  3. W. A. Al-Salam and A. Verma, A fractional Leibniz q-formula, Pacific J. Math., 60(2)(1975), 1-9. https://doi.org/10.2140/pjm.1975.60.1
  4. R. Y. Denis, On certain special transformations of poly-basic hypergeometric functions, The Math. Student, 51(1-4)(1983), 121-125.
  5. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, (1990).
  6. T. Kim, q-extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys., 14(3)(2007), 275-278. https://doi.org/10.1134/S1061920807030041
  7. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326(2)(2007), 1458-1465. https://doi.org/10.1016/j.jmaa.2006.03.037
  8. T. Kim and S. -H. Rim, A note on the q-integral and q-series, Adv. Stud. Contemp. Math. 2(2000), 37-45.
  9. R. Kumar, R. K. Saxena and H. M. Srivastava, Fractional q-derivatives and a class of expansions of basic hypergeometric functions, A Quart. J. Pure Appl. Math., 66(3-4)(1992), 295-310.
  10. K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Differential Equations, A Wiley Interscience Publication, John Wiley and Sons Inc., New York, (1993).
  11. R. K. Saxena, G. C. Modi and S. L. Kalla, A basic analogue of Fox's H-function, Rev. Tec. Ing. Univ. Zulia, 6(1983), 139-143.
  12. H. L. Shukla, Certain results involving basic hypergeometric functions and fractional q-derivative, The Math. Student, 61(1-4)(1992), 107-112.
  13. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London and New York, (1966).
  14. R. K. Yadav and S. D. Purohit, Fractional q-derivatives and certain basic hypergeo- metric transformations, South East Asian J. Math. and Math. Sc., 2(2)(2004), 37-46.
  15. R. K. Yadav and S. D. Purohit, On fractional q-derivatives and transformations of the generalized basic hypergeometric functions, J. Indian Acad. Math., 28(2)(2006), 321-326.

Cited by

  1. Generalizations of fractional q-Leibniz formulae and applications vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-29