DOI QR코드

DOI QR Code

On a Question of Closed Maps of S. Lin

Chen, Huaipeng

  • Received : 2009.10.05
  • Accepted : 2010.09.27
  • Published : 2010.12.31

Abstract

Let X be a regular $T_1$-space such that each single point set is a $G_{\delta}$ set. Denot 'hereditarily closure-preserving' by 'HCP'. To consider a question of closed maps of S. Lin in [6], we improve some results of Foged in [1], and prove the following propositions. Proposition 1. $D\;=\;\{x{\in}X\;:\;\mid\{F{\in}\cal{F}:x{\in}F\}\mid{\geq}{\aleph}_0\}$ is discrete and closed if $\cal{F}$ is a collection of HCP. Proposition 2. $\cal{H}\;=\;\{{\cup}\cal{F}'\;:\;F'$ is an fininte subcolletion of $\cal{F}_n\}$ is HCP if $\cal{F}$ is a collection of HCP. Proposition 3. Let (X,$\tau$) have a $\sigma$-HCP k-network. Then (X,$\tau$) has a $\sigma$-HCP k-network F = ${\cup}_n\cal{F}_n$ such that such tat: (i) $\cal{F}_n\;\subset\;\cal{F}_{n+1}$, (ii) $D_n\;=\;\{x{\in}X\;:\;\mid\{F{\in}\cal{F}_n\;:\;x{\in}F\}\mid\;{\geq}\;{\aleph}_0\}$ is a discrete closed set and (iii) each $\cal{F}_n$ is closed to finite intersections.

Keywords

${\aleph}$--spaces;k-networks;closed maps

References

  1. L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95(1985), 487-490 https://doi.org/10.1090/S0002-9939-1985-0806093-3
  2. G. Gruenhage, General metric spaces and metrization, in: M. Husek and J. Van Mill, Editors, Recent Progress in General topology, Chapter 7 240-274.
  3. G. Gruenhage. Generalized metric spaces, in: K. Kunen and J. E. Vaughan, Eds., handbook of Set-Theoretic Topology 423-501.
  4. N. Lasnev, Continuous decompositions and closed mappings of metric spaces, Sov. Math. Dokl., 165(1965), 756-758.
  5. N. Lasnev, Closed mappings of metric spaces, Sov. Math. Dokl., 170(1966), 505-507.
  6. S. Lin, A survey of the theory of $\aleph-spaces$, Q and A in Gen. Top., 8(1990), 405-419.
  7. E. Michael, A note on closed maps and compact sets, Israke J. Math., 2(1964), 173-176. https://doi.org/10.1007/BF02759940
  8. E. Michael, A quintuple quotient quest, Gen. Topology and Appl., 2(1972), 91-138. https://doi.org/10.1016/0016-660X(72)90040-2