INCLUSION AND EXCLUSION
FOR FINITELY MANY TYPES OF PROPERTIES

GAB-BYOUNG CHAE, MINSEOK CHEONG, AND SANG-MOK KIM

Abstract. Inclusion and exclusion is used in many papers to count certain objects exactly or asymptotically. Also it is used to derive the Bonferroni inequalities in probabilistic area [6]. Inclusion and exclusion on finitely many types of properties is first used in R. Meyer [7] in probability form and first used in the paper of McKay, Palmer, Read and Robinson [8] as a form of counting version of inclusion and exclusion on two types of properties. In this paper, we provide a proof for inclusion and exclusion on finitely many types of properties in counting version. As an example, the asymptotic number of general cubic graphs via inclusion and exclusion formula is given for this generalization.

1. Introduction

We begin with the definition of inclusion and exclusion (say I&E) with one property [9]. Let \(U \) be the universal set of \(S_0 \) elements, and suppose \(A_1, \ldots, A_s \) are \(s \) subsets of \(U \). For all integer \(k > 0 \), \([k]\) denotes the set \(\{1, 2, \ldots, k\} \). The complement of a set \(C \) of \(U \) is denoted by \(C^c \). For \(l = 0, \ldots, s \), define

\[
S_l = \sum_{I \subseteq [s]} \left| \bigcap_{i \in I} A_i \right|,
\]

where the sum is over all \(l \)-subsets \(I \) of \([s]\). For \(l = 0, \ldots, s \), let \(N_l \) be the number of elements of \(U \) that belong to exactly \(l \) of the sets \(\{A_1, \ldots, A_s\} \), that is,

\[
N_l = \sum_{I \subseteq [s]} \left| \bigcap_{i \in I} A_i \cap \bigcap_{i \notin I} \bar{A}_i \right|,
\]

Received September 9, 2009. Accepted March 11, 2010.

2000 Mathematics Subject Classification: [2000]06A07.
Key words and phrases: inclusion and exclusion, asymptotic enumeration.

This paper was supported by Wonkwang University in 2010.
where the sum is over all \(l \)-subsets \(I \) of \([s]\). By counting contribution of each element to \(N_u \) for \(u = l, \ldots, s \), which is multi-counted for \(S_l \), we have

\[
S_l = \sum_{l \leq u \leq s} \binom{u}{l} N_u.
\]

The numbers \(S_l \) and \(N_l \) are closely related and this relation is neatly expressed in terms of ordinary generating functions

\[
S(x) = \sum_{i=0}^{s} S_i x^i
\]

and

\[
N(x) = \sum_{i=0}^{s} N_i x^i.
\]

The following equation can be deduced from (3), (4), and (5).

Theorem 1.

\[
N(x + 1) = S(x)
\]

If \(x \) is replaced by \(x - 1 \) in the equality (6) and compare the coefficients, we have a relation:

\[
N_l = \sum_{0 \leq i \leq s-l} (-1)^i \binom{l+i}{i} S_{l+i}.
\]

It is important to study the upper and lower bounds for \(N_l \). Therefore we consider truncation

\[
\sum_{0 \leq i \leq \alpha} (-1)^i \binom{l+i}{i} S_{l+i} = \sum_{0 \leq i \leq s-l} (-1)^i \binom{l+i}{i} \sum_{s \geq u \geq l+i} \binom{u}{l+i} N_u.
\]

where \(0 < \alpha \leq s - l \). Now interchange the order of summation and obtain

\[
\sum_{0 \leq i \leq \alpha} (-1)^i \binom{l+i}{i} S_{l+i} = \sum_{u \geq l} N_u \binom{u}{l} \sum_{0 \leq i \leq \alpha} (-1)^i \binom{u-l}{i}
\]

It can be seen that:

\[
\sum_{0 \leq i \leq \alpha} (-1)^i \binom{u-l}{i} = \begin{cases}
(-1)^{\alpha} \binom{u-l-\alpha}{\alpha}, & \text{if } u \geq l + 1; \\
1, & \text{if } u = l
\end{cases}
\]
Inclusion and Exclusion for finitely many types of properties

\[\sum_{0 \leq i \leq \alpha} (-1)^i \binom{l + i}{i} S_{l+i} = N_l + (-1)^\alpha \sum_{u \geq l+1} N_u \binom{u-l-1}{\alpha} \]

Since the contribution of the sum on the right side of (11) is negative or positive according as \(s \) is odd or even, we can have the theorem below.

Theorem 2. For \(l = 0, \ldots, s \) let \(S_l = \sum |\bigcap_{i \in I} A_i| \), where the sum is over all \(l \)-subsets \(I \) of \([s]\), and \(N_l \) be the number of elements of \(U \) that belong to exactly \(l \) of the sets \(\{ A_1, \ldots, A_s \} \). Then

\[\sum_{0 \leq i \leq 2\alpha - 1} (-1)^i \binom{l + i}{i} S_{l+i} \leq N_l \leq \sum_{0 \leq i \leq 2\alpha} (-1)^i \binom{l + i}{i} S_{l+i}. \]

I&E with two properties as an enumeration formula is introduced by McKay, Palmer, Read and Robinson [8] in which the following asymptotic estimate has been found using the equation which is similar to (12) with two properties: Let \(g(2n, l_1, l_2) \) be the number of general cubic graphs on \(2n \) labeled vertices with \(l_1 \) loops and \(l_2 \) double edges. Then for \(l_1 l_2 = o(\sqrt{n}) \), they find

\[g(2n, l_1, l_2) = (1 + o(1)) e^{-2} \cdot \frac{(6n)!}{(3!)^{2n} \cdot (3n)!} \cdot \frac{2^{l_1} \cdot 2^{l_2}}{l_1! \cdot l_2!}. \]

It was used to find the total number of general cubic graphs with \(2n \) vertices by summing up the values \(g(2n, l_1, l_2) \) using equation (13):

\[g(2n) = (1 + o(1)) e^2 \cdot \frac{(6n)!}{(3!)^{2n} \cdot (3n)!}. \]

Wormald [10] first derived (14) by estimating the number of matrices with given row and column sums and it was also derived from matrix approximations of Bender and Canfield [1]. The formula (13) can be derived directly by the method of I&E on two types of properties in [8], but the proof of the inequality was omitted. The asymptotic numbers of general cubic graphs with given connectivity [3] are obtained as a result of (13) which may not be obtained from (14) alone without (13).

In this paper, we provide the proof for inclusion and exclusion on finitely many types of properties in Section 2. An inequality of I&E on
three types of properties is obtained in Section 3, which is an application of I&E on three types of properties. We show that (13) and (14) can be obtained directly via I&E which gives a simpler method to handle triple edges than that of done in [3]. A generalization of the inequality of I&E on finitely many types of properties is used to find the asymptotic number of 4-regular graphs with given connectivity derived from I&E with five types of properties [4]. Most general graph theoretic terminologies and notations follow [5] and we assume the basic terminologies for I&E developed in [9].

2. I&E for finitely many types of properties

Now we deal with \(k \) types of properties \(k \geq 2 \). Let \(U \) be the universal set of \(S_o \) elements. Let \(k \) be a positive integer where \(s_k \) is the number of subsets of \(U \) with property \(k \). Suppose that \(P^j_1, \ldots, P^j_{s_j} \) are subsets of \(U \) with property \(j \) \((j = 1, \ldots, k)\). For integers \(l_j \) with \(0 \leq l_j \leq s_j \) \((j = 1, \ldots, k)\) define

\[
S_{l_1, \ldots, l_k} = \sum \left| \bigcap_{i_1 \in I_1} P^1_{i_1} \cap \cdots \cap \bigcap_{i_k \in I_k} P^k_{i_k} \right|
\]

where the sum is over all \(l_j \)-subsets \(I_j \subset [s_j] \) for \(j = 1, \ldots, k \). For \(0 \leq l_j \leq s_j \) \((j = 1, \ldots, k)\), let \(N_{l_1, \ldots, l_k} \) be the number of elements in \(U \) that belong to exactly \(l_j \) of the sets \(\{P^j_i\}_{i=1}^{s_j} \) for \(j = 1, \ldots, k \). That is

\[
N_{l_1, \ldots, l_k} = \sum \left| \left(\bigcap_{i_1 \in I_1} P^1_{i_1} \cap \bigcap_{i_1 \not\in I_1} P^1_{i_1} \right) \cap \cdots \cap \left(\bigcap_{i_k \in I_k} P^k_{i_k} \cap \bigcap_{i_k \not\in I_k} P^k_{i_k} \right) \right|
\]

where the sum is again over all \(l_j \)-subsets \(I_j \subset [s_j] \) for \(j = 1, \ldots, k \). By counting the contribution to \(S_{l_1, \ldots, l_k} \) of each element \(x \) of \(U \) that contributes to \(N_{u_1, \ldots, u_k} \) for \(u_1 \geq l_1, \ldots, u_k \geq l_k \), we have

\[
S_{l_1, \ldots, l_k} = \sum_{l_1 \leq u_1 \leq s_1} \cdots \sum_{l_k \leq u_k \leq s_k} \prod_{i=1}^{k} \left(\begin{array}{c} u_i \\ l_i \end{array} \right) N_{u_1, \ldots, u_k}.
\]
The numbers S_{l_1, \ldots, l_k} and N_{l_1, \ldots, l_k} are closely related and this relation is neatly expressed in terms of ordinary generating functions

\[(18) \quad S(x_1, \ldots, x_k) = \sum_{l_1=0}^{s_1} \cdots \sum_{l_k=0}^{s_k} S_{l_1, \ldots, l_k} x_1^{l_1} \cdots x_k^{l_k}\]

and

\[(19) \quad N(x_1, \ldots, x_k) = \sum_{l_1=0}^{s_1} \cdots \sum_{l_k=0}^{s_k} N_{l_1, \ldots, l_k} x_1^{l_1} \cdots x_k^{l_k}\]

Then the following proposition can be obtained from (17), (18), and (19), respectively.

Proposition 3. $S(x_1, \ldots, x_k)$ and $N(x_1, \ldots, x_k)$ are ordinary generating functions defined as above then

\[(20) \quad N(x_1 + 1, \ldots, x_k + 1) = S(x_1, \ldots, x_k).\]

If we set $x_1 = \cdots = x_k = -1$ in (20), we obtain

\[(21) \quad N(0, \ldots, 0) = S(-1, \ldots, -1).\]

This is the number of elements in U that belong to none of the sets $P_{i_1}^{j_1}, \ldots, P_{i_s}^{j_s}$ for $j = 1, \ldots, k$. Now if x_1, \ldots, x_k are replaced by $x_1 - 1, \ldots, x_k - 1$ in (20) respectively, we have, by comparing coefficients of $x_1^{l_1} \cdots x_k^{l_k}$;

\[(22) \quad N_{l_1, \ldots, l_k} = \sum_{0 \leq v_1 \leq s_1 - l_1} \cdots \sum_{0 \leq v_k \leq s_k - l_k} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \binom{l_i + v_i}{v_i} S_{l_1 + v_1, \ldots, l_k + v_k}.\]

Then we consider the truncation

\[(23) \quad \sum_{0 \leq v_1 \leq \alpha_1} \cdots \sum_{0 \leq v_k \leq \alpha_k} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \binom{l_i + v_i}{v_i} S_{l_1 + v_1, \ldots, l_k + v_k}\]

\[= \sum_{0 \leq v_1 \leq \alpha_1} \cdots \sum_{0 \leq v_k \leq \alpha_k} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \binom{l_i + v_i}{v_i} \prod_{l_1 + v_1 \leq u_1}^{k} \prod_{l_i + v_i \leq u_i}^{k} \prod_{l_k + v_k \leq u_k}^{k} N_{u_1, \ldots, u_k}.\]
where $0 < \alpha_i \leq s_i - l_i$ and the right side has been obtained by substitution of (17). Now we interchange the order of summation and obtain (24)

$$
\sum_{0 \leq v_1 \leq \alpha_1} \cdots \sum_{0 \leq v_k \leq \alpha_k} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \binom{l_i + v_i}{v_i} S_{l_1 + v_1, \ldots, l_k + v_k}
$$

$$
= \sum_{l_1 \leq u_1} \cdots \sum_{l_k \leq u_k} N_{u_1, \ldots, u_k} \prod_{i=1}^{k} \binom{u_i}{l_i} \sum_{0 \leq v_1 \leq \alpha_1} \cdots \sum_{0 \leq v_k \leq \alpha_k} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \binom{u_i - l_i}{v_i}.
$$

It can be seen that:

(25) $$
\sum_{0 \leq v_1 \leq \alpha_1} \cdots \sum_{0 \leq v_k \leq \alpha_k} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \binom{u_i - l_i}{v_i}
$$
Inclusion and Exclusion for finitely many types of properties 119

\[
\begin{cases}
1, & \text{if } u_i = l_i \text{ for all } i. \\
(-1)^{\alpha_1} \left(\frac{u_1 - l_1 - 1}{\alpha_1} \right), & \text{if } u_1 \geq l_1 + 1 \text{ and } u_i = l_i \text{ for all } i \neq 1; \\
\vdots & \\
(-1)^{\alpha_k} \left(\frac{u_k - l_k - 1}{\alpha_k} \right), & \text{if } u_k \geq l_k + 1 \text{ and } u_i = l_i \text{ for all } i \neq 1; \\
(-1)^{\alpha_1+\alpha_2} \left(\frac{u_1 - l_1 - 1}{\alpha_1} \right) \left(\frac{u_2 - l_2 - 1}{\alpha_2} \right), & \text{if } u_1 \geq l_1 + 1, u_2 \geq l_2 + 1 \text{ and } u_i = l_i \text{ for all } i \neq 1 \text{ and } 2; \\
\vdots & \\
(-1)^{\alpha_{k-1}+\alpha_k} \left(\frac{u_{k-1} - l_{k-1} - 1}{\alpha_{k-1}} \right) \left(\frac{u_k - l_k - 1}{\alpha_k} \right), & \text{if } u_{k-1} \geq l_{k-1} + 1, \ u_k \geq l_k + 1 \text{ and } u_i = l_i \text{ for all } i \neq k \text{ and } k; \\
(-1)^{\alpha_1+\alpha_2+\alpha_3} \left(\frac{u_1 - l_1 - 1}{\alpha_1} \right) \left(\frac{u_2 - l_2 - 1}{\alpha_2} \right) \left(\frac{u_3 - l_3 - 1}{\alpha_3} \right), & \text{if } u_1 \geq l_1 + 1, u_2 \geq l_2 + 1, u_3 \geq l_3 + 1 \text{ and } u_i = l_i \text{ for all } i \neq 1 \text{, 2 and } 3; \\
\vdots & \\
(-1)^{\alpha_1+\cdots+\alpha_k} \prod_{i=1}^{k} \left(\frac{u_i - l_i - 1}{\alpha_i} \right), & \text{if } u_i \geq l_i + 1 \text{ for all } i = 1, \ldots, k.
\end{cases}
\]

Thus we have

\[
\sum_{0 \leq v_i \leq \alpha_1} (-1)^{v_1 + \cdots + v_k} \prod_{i=1}^{k} \left(\frac{l_i + v_i}{v_i} \right) S_{l_1 + v_1, \ldots, l_k + v_k} = N_{l_1, \ldots, l_k}
\]

\[
\vdots
\]

\[
+ (-1)^{\alpha_1} \sum_{l_1 + 1 \leq u_1} N_{u_1, l_2, \ldots, l_k} \left(\frac{u_1}{l_1} \right) \left(\frac{u_1 - l_1 - 1}{\alpha_1} \right)
\]

\[
\vdots
\]
\[(26)\]
\[
+ (-1)^{\alpha_k} \sum_{l_k+1 \leq u_k} N_{l_1, \ldots, l_{k-1}, u_k} \left(\begin{array}{c} u_k \\ l_k \end{array} \right) \left(\frac{u_k - l_k - 1}{\alpha_k} \right) \\
+ (-1)^{\alpha_1 + \alpha_2} \sum_{l_1+1 \leq u_1 \atop l_2+1 \leq u_2} N_{u_1, u_2, l_3, \ldots, l_k} \left(\begin{array}{c} u_1 \\ l_1 \end{array} \right) \left(\begin{array}{c} u_2 \\ l_2 \end{array} \right) \left(\frac{u_1 - l_1 - 1}{\alpha_1} \right) \left(\frac{u_2 - l_2 - 1}{\alpha_2} \right) \\
\vdots \\
+ (-1)^{\alpha_{k-1} + \alpha_k} \sum_{l_{k-1}+1 \leq u_{k-1} \atop l_k+1 \leq u_k} N_{l_1, \ldots, l_{k-2}, u_{k-1}, u_k} \left(\begin{array}{c} u_{k-1} \\ l_{k-1} \end{array} \right) \left(\begin{array}{c} u_k \\ l_k \end{array} \right) \left(\frac{u_{k-1} - l_{k-1} - 1}{\alpha_{k-1}} \right) \left(\frac{u_k - l_k - 1}{\alpha_k} \right) \\
\vdots \\
+ (-1)^{\alpha_1 + \cdots + \alpha_k} \sum_{l_1+1 \leq u_1 \atop l_2+1 \leq u_2 \atop l_3+1 \leq u_3} N_{u_1, u_2, u_3, l_4, \ldots, l_k} \prod_{i=1}^{3} \left(\begin{array}{c} u_i \\ l_i \end{array} \right) \left(\frac{u_i - l_i - 1}{\alpha_i} \right) \\
\vdots \\
+ (-1)^{\alpha_1 + \cdots + \alpha_k} \sum_{l_1+1 \leq u_1} N_{u_1, \ldots, u_k} \prod_{i=1}^{k} \left(\begin{array}{c} u_i \\ l_i \end{array} \right) \left(\frac{u_i - l_i - 1}{\alpha_i} \right)
\]

If we set all the values of \(\{\alpha_i | i = 1, \ldots, k\} \) to be even in (26), we have an upper bound for \(N_{l_1, \ldots, l_k} \). On the other hand, the corresponding lower bound is not easy to obtain.

Now we deal with the main theorem. We state a trivial result which is used for the proof of our main theorem.

Lemma 4. Suppose \(\alpha, n \) and \(k \) are positive integers. If \(\alpha \geq \frac{n(k-1)-1}{k} \), for \(k < n \), we have

\[(27)\]
\[
\binom{n}{\alpha} \geq (k-1) \binom{n}{\alpha+1}.
\]

Theorem 5. Suppose that \(P^j_1, \ldots, P^j_{s_j} \) are subsets of \(U \) with property \(j \) (\(j = 1, \ldots, k \)). For integers \(l_j \) with \(0 \leq l_j \leq s_j \) (\(j = 1, \ldots, k \)) define
\(S_{l_1,\ldots,l_k} = \sum_{i_1 \in I_1} \cdots \sum_{i_k \in I_k} P_{i_1}^1 \cap \cdots \cap P_{i_k}^k \) where the sum is over all \(l_j \)-subsets \(I_j \subset [s_j] \) for \(j = 1, \ldots, k \). And for \(0 \leq l_j \leq s_j \) for \(j = 1, \ldots, k \), let \(N_{l_1,\ldots,l_k} \) be the number of elements in \(U \) that belong to exactly \(l_j \) of the sets \(\{ P_{i_j}^j \}_{i_j=1}^{s_j} \) for \(j = 1, \ldots, k \). Then there are \(\{ \bar{\alpha}_i \}, i = 1, \ldots, k \) such that

\[
\text{(28)} \quad \sum_{0 \leq v_1 \leq \bar{\alpha}_1} \cdots \sum_{0 \leq v_k \leq \bar{\alpha}_k} (-1)^{v_1+\cdots+v_k} \prod_{i=1}^{k} \binom{l_i + v_i}{v_i} S_{l_1+v_1,\ldots,l_k+v_k}
\]

Proof. Since contribution of the sums on the right side of (17) is positive if all \(\alpha'_i \)'s \((i = 1, \ldots, k)\) are even, we have the upper bound. For the lower bound, for convenient, assume that \(k \) is even (when \(k \) is odd we can do similarly). Let

\[
\Phi_{\alpha_1}^1 = \sum_{l_1+1 \leq u_1} N_{u_1,l_2,\ldots,l_k} \binom{u_1}{l_1} \binom{u_1 - l_1 - 1}{\alpha_1},
\]

\[
\vdots
\]

\[
\Phi_{\alpha_k}^1 = \sum_{l_k+1 \leq u_k} N_{l_1,\ldots,l_{k-1},u_k} \binom{u_k}{l_k} \binom{u_k - l_k - 1}{\alpha_k},
\]

\[
\Phi_{\alpha_1,\alpha_2}^2 = \sum_{l_1+1 \leq u_1 \atop l_2+1 \leq u_2} N_{u_1,u_2,l_3,\ldots,l_k} \binom{u_1}{l_1} \binom{u_2}{l_2} \binom{u_1 - l_1 - 1}{\alpha_1} \binom{u_2 - l_2 - 1}{\alpha_2},
\]

\[
\vdots
\]

\[
\Phi_{\alpha_k-1,\alpha_k}^2 = \sum_{l_k+1 \leq u_k} N_{l_1,\ldots,l_{k-2},u_{k-1},u_k} \binom{u_{k-1}}{l_{k-1}} \binom{u_{k-1} - l_{k-1} - 1}{\alpha_{k-1}} \binom{u_k - l_k - 1}{\alpha_k}
\]
\[
\Phi_{\alpha_1,\alpha_2,\alpha_3}^3 = \sum_{l_1+1 \leq u_1}^l N_{u_1,u_2,u_3,l_4,...,l_k} \prod_{i=1}^3 \left(\frac{u_i - l_i - 1}{\alpha_i} \right),
\]
\[
\Phi_{\alpha_{k-2},\alpha_{k-1},\alpha_k}^3 = \sum_{l_{k-2}+1 \leq u_{k-2}}^l N_{l_1,...,l_{k-3},u_{k-2},u_{k-1},u_k} \prod_{i=k-2}^k \left(\frac{u_i - l_i - 1}{\alpha_i} \right),
\]
\[
\Phi_{\alpha_1,...,\alpha_k}^k = \sum_{l_1+1 \leq u_1}^l \sum_{l_k+1 \leq u_k}^l N_{u_1,...,u_k} \prod_{i=1}^k \left(\frac{u_i - l_i - 1}{\alpha_i} \right).
\]

Note that there are \(\binom{k}{2}\) terms of the form \(\Phi_{\alpha_{i_1},\alpha_{i_2}}^2\), \(\binom{k}{3}\) terms of the form \(\Phi_{\alpha_{i_1},\alpha_{i_2},\alpha_{i_3}}^3\), \ldots, and \(\Phi_{\alpha_1,...,\alpha_k}^k\) is the only one term in the form of \(\Phi_{\alpha_{i_1},...,\alpha_k}^k\) since \(\binom{k}{k} = 1\). Then (26) can be written:

(30)
\[
\sum_{0 \leq v_1 \leq \alpha_1} \sum_{0 \leq v_k \leq \alpha_k} (-1)^{v_1+...+v_k} \prod_{i=1}^k \left(\frac{l_i + v_i}{u_i} \right) S_{l_1+v_1,...,l_k+v_k}
\]
\[
= N_{l_1,...,l_k} + (-1)^{\alpha_1} \Phi_{\alpha_1}^1 + \cdots + (-1)^{\alpha_k} \Phi_{\alpha_k}^k + (-1)^{\alpha_1+\alpha_2} \Phi_{\alpha_1,\alpha_2}^2 + (-1)^{\alpha_1+\alpha_3} \Phi_{\alpha_1,\alpha_3}^2 + \cdots + (-1)^{\alpha_{k-2}+\alpha_k} \Phi_{\alpha_{k-2},\alpha_k}^2 + (-1)^{\alpha_{k-1}+\alpha_k} \Phi_{\alpha_{k-1},\alpha_k}^2 + \cdots + (-1)^{\alpha_1+\alpha_2+\alpha_3} \Phi_{\alpha_1,\alpha_2,\alpha_3}^3 + \cdots + (-1)^{\alpha_{k-2}+\alpha_{k-1}+\alpha_k} \Phi_{\alpha_{k-2},\alpha_{k-1},\alpha_k}^3 + \cdots + (-1)^{\alpha_1+\alpha_2+\alpha_3+\alpha_4} \Phi_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}^4 + \cdots + (-1)^{\alpha_1+...+\alpha_k} \Phi_{\alpha_1,...,\alpha_k}^k.
\]
It suffices to show that the right side of (30) except for $N_{l_1,...,l_k}$ is less than or equal to zero to obtain the lower bound for $N_{l_1,...,l_k}$.

Suppose there is no such set $\{\alpha_1,\ldots,\alpha_k\}$ that makes the right side of (30) except $N_{l_1,...,l_k}$ less than or equal to zero. That means the right side of (30) except $N_{l_1,...,l_k}$ is always positive for any set $\{\alpha_1,\ldots,\alpha_k\}$. Suppose $\{\alpha_1 + 1,\ldots,\alpha_k + 1\}$ is a set where all α_i's $i = 1,\ldots,k$ are odd such that $\alpha_j > \frac{(s_i-l_i-1)(k-1)-1}{k}$. Then this set makes the right side of (30) except $N_{l_1,...,l_k}$ positive. We have k more sets which are made by replacing $\alpha_i + 1$ by α_i for each $i = 1,\ldots,k$, from the set $\{\alpha_1 + 1,\ldots,\alpha_k + 1\}$. If we substitute one of this set in (30), the right side of (30) except $N_{l_1,...,l_k}$ still be positive by our assumption. For example, if we substitute $\{\alpha_1 + 1,\alpha_2 + 1,\ldots,\alpha_{\omega-1} + 1,\alpha_{\omega},\alpha_{\omega+1} + 1,\ldots,\alpha_k + 1\}$ solution set in equation (30), we have the formula which is positive:

\[
\Phi^1_{\alpha_1+1} + \Phi^1_{\alpha_2+1} + \cdots + \Phi^1_{\alpha_{\omega-1}+1} - \Phi^1_{\alpha_\omega} - \Phi^1_{\alpha_{\omega+1}+1} + \cdots + \Phi^1_{\alpha_k+1}
\]
\[
- \Phi^2_{\alpha_\omega,\alpha_1+1} - \Phi^2_{\alpha_\omega,\alpha_2+1} - \cdots - \Phi^2_{\alpha_\omega,\alpha_k+1} - \Phi^2_{\alpha_1+1,\alpha_2+1} + \cdots + \Phi^2_{\alpha_\omega,\alpha_1+1,\alpha_2+1}
\]
\[
- \Phi^3_{\alpha_{\omega-1}+1,\alpha_1+1,\alpha_3+1} - \cdots - \Phi^3_{\alpha_\omega,\alpha_{\omega-1}+1,\alpha_k+1} + \cdots + \Phi^3_{\alpha_\omega,\alpha_1+1,\alpha_3+1}
\]
\[
- \Phi^4_{\alpha_{\omega-1}+1,\alpha_1+1,\alpha_3+1} - \cdots - \Phi^4_{\alpha_\omega,\alpha_{\omega-2}+1,\alpha_{\omega-1}+1,\alpha_k+1} + \cdots + \Phi^4_{\alpha_{\omega-2}+1,\alpha_{\omega-1}+1,\alpha_k+1}
\]
\[
\vdots
\]
\[
- \Phi^k_{\alpha_1+1,\alpha_2+1,...,\alpha_{\omega-1}+1,\alpha_\omega,\alpha_{\omega+1}+1,...,\alpha_k+1}
\]

Let us call the left side of (31) as D_ω where $\omega = 1,2,\ldots,k$. We need some explanation for the negative/positive terms in (31). Note that \(\binom{k-1}{\tau} + \binom{k-1}{\tau-1} = \binom{k}{\tau} \). For all $\tau = 1,\ldots,k$, there are $\binom{k}{\tau}$ terms of form $\Phi^\tau_{\alpha_1+1,\ldots,\alpha_{\tau}+1}$ which contribute as positive quantities in (31). And there are $\binom{k}{\tau-1}$ terms contributing as negative quantities in (31) because $\tau-1$ terms of the form α_1+1 are chosen from $\{\alpha_1+1,\ldots,\alpha_{\omega-1}+1,\alpha_{\omega},\alpha_{\omega+1}+1,\ldots,\alpha_k+1\}$ along with α_ω which was already chosen in the subscript of $\Phi^\tau_{\alpha_1+1,\ldots,\alpha_{\tau-2}+1}$. Hence we have k inequalities just like (31). Now consider the sum of D_ω for $\omega = 1,2,\ldots,k$, that is $\sum_{\omega=1}^k D_\omega$, which is denoted by Δ. By our assumption, we have $\Delta > 0$.

\[
\Delta > 0.
\]
Actually Δ is the formula which is the sum of k formula as (31) which can be obtained when we replace α_i+1 by α_i for each $i = 1, \ldots, k$, from the set $\{\alpha_1 + 1, \ldots, \alpha_k + 1\}$ where all $\alpha'_i(i = 1, \ldots, k)$ are odd such that $\alpha_i > \frac{(s_i - l_i - 1)(k-1)-1}{k}$.

Now for fixed τ where $1 \leq \tau \leq k$, consider
\begin{equation}
\Phi_{\alpha z_1+1, \ldots, \alpha z_\tau+1} \in \Delta
\end{equation}
in Δ where $\{z_1, \ldots, z_\tau\}$ is a τ subset of $[k]$. Then overall there are k such terms in Δ, since we have one such term in each D_ω for $\omega = 1, 2, \ldots, k$, which have an index set $\{z_1, \ldots, z_\tau\}$. Among them, τ terms are of the form
\begin{equation}
\Phi_{\alpha z_1+1, \ldots, \alpha z_\tau+1} \in \Delta
\end{equation}
for each $h = 1, \ldots, \tau$ (i.e. α_{z_h} is odd and others are even) which contribute as negative quantities. And $k - \tau$ of them have the form
\begin{equation}
\Phi_{\alpha z_1+1, \ldots, \alpha z_\tau+1} \in \Delta
\end{equation}
which contribute as positive quantities. Hence for index set $\{z_1, \ldots, z_\tau\}$, consider
\begin{equation}
(k - \tau)\Phi_{\alpha z_1+1, \ldots, \alpha z_\tau+1} \leq (k - 1)\Phi_{\alpha z_1+1, \ldots, \alpha z_\tau+1}
\end{equation}
since
\begin{equation}
(k - 1)\left(\frac{u_{z_1} - l_{z_1} - 1}{\alpha_{z_1} + 1}\right) \left(\frac{u_{z_2} - l_{z_2} - 1}{\alpha_{z_2} + 1}\right) \cdots \left(\frac{u_{z_\tau} - l_{z_\tau} - 1}{\alpha_{z_\tau} + 1}\right)
\end{equation}
is hold by Lemma 4. Thus (33) cannot be positive for index set $\{z_1, \ldots, z_\tau\}$. Note that Δ is the sum of the values (33) for $\tau = 1, \ldots, k$. This implies
\begin{equation}
\Delta \leq 0
\end{equation}
which is a contradiction to our assumption. This completes the proof.
3. Applications

Here we use the same idea that was used in [1, 3] for representing general cubic graphs with triples edges. The main difference between the computations of our paper and those of [3] is that we consider triple edges along with loops and double edges.

Let \(V = \bigcup_{1 \leq i \leq 2n} V_i \) be a partition of \(V \) into 3-subsets \(V_i \) for \(i = 1, \ldots, 2n \). We define a configuration \(F \) with vertex set \(V \) where \(|V| = 6n \). The edge set of \(F \) consists of \(3n \) vertex-disjoint edges. Thus \(F \) is a 1-factor with vertex set \(V = V(G) \) and it is easy to see that the total number of configurations is

\[
\frac{(6n)!}{2^{3n}(3n)!}.
\]

For any edge \(uv \) in \(F \), if both vertices \(u \) and \(v \) belong to the same set \(V_i \) of the partition, the edge is called a 1-cycle. Otherwise they are contained in two different sets \(V_i \) and \(V_j \). If there are exactly two such edges between \(V_i \) and \(V_j \), we call this a 2-cycle and if there are three, it is a triple.

A graph \(G \) is obtained from this configuration by shrinking \(V_i \) to a vertex for all \(i \). The graph \(G \) will have a vertex set \(V \) with \(|V| = 2n \), and an edge set \(E(G) \) with \(|E(G)| = 3n \), where an edge \(uv \in E(G) \) may be a loop, a single edge, or a part of double/triple edge where the number of these are denoted by \(l, s, d \), or \(t \), respectively. Note that cubic graphs with \(2n \) vertices (order \(2n \)) satisfy the relation \(2n = \frac{2s + 4d + 2l + 6t}{3} \).

Now, for \(i = 1, \ldots, 2n \), let \(P_{l_1}^i \) be the set of configurations which have a 1-cycle in \(V_i \). Assume the \(\binom{2n}{2} \) pairs of sets \(V_i \) in the partition are ordered from 1 to \(\binom{2n}{2} \). Let \(P_{l_2}^j \) be the set of configurations which have a 2-cycle in the \(j^{th} \) pair for \(j = 1, \ldots, \binom{2n}{2} \). Let \(P_{l_3}^j \) be the set of configurations which have a triple in the \(j^{th} \) pair for \(j = 1, \ldots, \binom{2n}{2} \). Let \(N(l_1, l_2, l_3) \) be number of configurations with exactly \(l_1 \) 1-cycles, \(l_2 \) 2-cycles, and \(l_3 \) triples, that means the number of configurations which belong to exactly \(l_1 \) of \(\{P_{l_1}^i| i = 1, \ldots, 2n\} \), \(l_2 \) of \(\{P_{l_2}^j| j = 1, \ldots, \binom{2n}{2}\} \), and \(l_3 \) of \(\{P_{l_3}^j| j = 1, \ldots, \binom{2n}{2}\} \).

Let \(S_{l_1,l_2,l_3} \) be the number of configurations which have at least \(l_1 \) 1-cycles, \(l_2 \) 2-cycles and \(l_3 \) triple edges. Then \(S_{l_1,l_2,l_3} \) can be found by
using its definition in (15);

\[S_{l_1, l_2, l_3} = \binom{2n}{l_1, 2l_2, 2l_3, 2n - l_1 - 2l_2 - 2l_3} 3^{l_1} \binom{2l_2}{l_2^2} (2l_3)! \frac{(2l_3)!}{2^{l_2} \cdot l_3!} (6)^{l_3} (1 + o(1))(2(3n - l_1 - 2l_2 - 3l_3))! \]

where the term \((1 + o(1))\) allows for a negligible number of new triples from 2-cycles (see Lemma 1 in [3]). Here is a sketch of the justification of this formula. First we choose \(l_1 + 2l_2 + 2l_3 + 2n - l_1 - 2l_2 - 2l_3\) labels from the \(2n\) available. Then it can be seen that the number of ways to form the adjacencies is

\[3^{l_1} \frac{(2l_2)!}{2^{l_2} \cdot l_2!} (3^2 \cdot 2)^{l_2} \frac{(2l_3)!}{2^{l_2} \cdot l_3!} (6)^{l_3} \]

for configurations which have \(l_1\) 1-cycles, \(l_2\) 2-cycles and \(l_3\) triple edges.

\[\frac{(2(3n - l_1 - 2l_2 - 3l_3))!}{2^{3n-l_1-2l_2-3l_3}(3n - l_1 - 2l_2 - 3l_3)!} \]

is the number of ways to lay down the remaining edges. Then, on substituting (37) into (28) and simplifying it, we have the number of configurations which have exactly \(l_1\) 1-cycles, \(l_2\) 2-cycles and \(l_3\) triples;

Theorem 6. For \(l_1, l_2, l_3 = o(\sqrt{n})\),

\[N_{l_1, l_2, l_3} = (1 + o(1)) \frac{e^{-2\frac{1}{16n}}}{l_1!l_2!l_3!(18n)^{l_3}} \frac{(6n)!}{2^{3n}(3n)!}. \]

Proof. It is enough to consider right side of (28), that is upper bound of \(N(l_1, l_2, l_3)\). On substituting equation (37) into the right side of (28) and simplifying it with the fact that \(\binom{n}{k} = 1 + o(1)\) for \(k = o(n^{1/2})\), we
have, where \(k = 3 \),

\[
N(l_1, l_2, l_3) \leq \sum_{0 \leq v_1 \leq 2a_1} \sum_{0 \leq v_2 \leq 2a_2} \sum_{0 \leq v_3 \leq 2a_3} (-1)^{v_1+v_2+v_3} \prod_{i=1}^{3} \binom{l_i + v_i}{v_i}
\]

\[
\left(\frac{2n}{l_1, 2l_2, 2l_3, 2n - l_1 - 2l_2 - 2l_3} \right) 3^{l_1} \frac{(2l_2)!}{2^{l_2} \cdot l_2!} \frac{(3^2 \cdot 2)l_2}{2^{l_2} \cdot l_2} \frac{(2l_3)!}{(6)^{l_3}}
\]

\[
2^{3n - l_1 - 2l_2 - 3l_3} \frac{(3n - l_1 - 2l_2 - 3l_3)!}{(2n - (l_1 + v_1) - 2(l_2 + v_2) - 2(l_3 + v_3) + 1)!}
\]

\[
\frac{(6n)!}{l_1!l_2!l_3!2^{3n}(3n)!} \sum_{0 \leq v_1 \leq 2a_1} \sum_{0 \leq v_2 \leq 2a_2} \sum_{0 \leq v_3 \leq 2a_3} \frac{(-1)^{v_1+v_2+v_3}}{v_1!v_2!v_3!} \left(\frac{(6n)!}{(18n)^{v_3}} \right)
\]

\[
\sim (1 + o(1)) \frac{1}{l_1!l_2!l_3!} \frac{1}{(18n)^{l_3}} \frac{(6n)!}{2^{3n} \cdot (3n)!}
\]

\[
\left[\sum_{0 \leq v_1 \leq 2a_1} \sum_{0 \leq v_2 \leq 2a_2} \sum_{0 \leq v_3 \leq 2a_3} \frac{(-1)^{v_1+v_2+v_3}}{v_1!v_2!v_3!} \frac{1}{(18n)^{v_3}} \right]
\]

\[
\sim (1 + o(1)) \frac{e^{-2 - \frac{1}{18n}}}{l_1!l_2!l_3!(18n)^{l_3}} \frac{(6n)!}{2^{3n}(3n)!}
\]

\[
(\text{since } \sum (-1)^n/n! = e^{-1}).
\]

where both \(l, d = o(\sqrt{n}) \) and \(\{\bar{\alpha}_i\} \) with \(\bar{\alpha}_i > \frac{(a_i - l_i - 1)(k-1)-1}{k} (1 \leq i \leq 3) \).

Since we have the same result for the left side of (28), so the proof is completed.

Let \(g(2n, l_1, l_2, l_3) \) be the number of labelled cubic general graphs \(G \) with exactly \(l_1 \) loops, \(l_2 \) double edges and \(l_3 \) triple edges. Then we
have the following relationship between $g(2n, l_1, l_2, l_3)$ and $N(l_1, l_2, l_3) = N_{l_1,l_2,l_3}$ by shrinking each 3-vertex set V_i of a configuration to a single vertex in a graph.

Proposition 7.

(40) \[N(l_1, l_2, l_3) = g(2n, l_1, l_2, l_3)3^{l_1} \left(\frac{3}{2} \right)^{2l_2} 2^{l_2} 6^{l_3} (3!)^{2n - l_1 - 2l_2 - 2l_3}. \]

Then from Theorem 6 and Proposition 7, we have the following corollaries.

Corollary 8. For $l_1, l_2, l_3 = o(\sqrt{n})$, we have

(41) \[g(2n, l_1, l_2, l_3) = (1 + o(1)) e^{-2 + \frac{5}{18n}} \frac{(6n)!}{(3!)^{2n}} \frac{2^{l_1} 2^{l_2} (\frac{1}{3n})^{l_3}}{l_1! l_2! l_3!}. \]

It is interesting to compare this result to (13). The fact that triple edges are negligible is proved in [3] with tremendous work. It is easy to handle triple edges when we find (41) by using I&E with three types of properties.

We have the following asymptotic number of general cubic graphs on $2n$ vertices.

Corollary 9.

(42) \[g(2n) = (1 + o(1)) e^{2 + \frac{5}{18n}} \frac{(6n)!}{(3!)^{2n}} \frac{(3!)^{2n} (3n)!}{2^{3n} (3n)!}. \]

The asymptotic number of general cubic graphs on $2n$ vertices obtained in Corollary 9 looks different to the one in (14) which was found in Wormald [10], Bender and Canfield [1] and Chae [3]. However they are basically the same. Another application of I&E with five types of properties can be found in [4] in which the asymptotic numbers of general 4-regular graphs are computed with a given connectivity. Note that those numbers can not be obtained from the formula in Proposition 3.8 in [10].

Acknowledgments

The author are grateful to the referees whose comments improved the presentation.
References

Gab-Byoung Chae
Division of Mathematics and Informational Statistics
Wonkwang University, Iksan, Jeollabukdo, Korea
E-mail: rivendell@wonkwang.ac.kr

Minseok Cheong
Division of Mathematics
Sogang University, Seoul, Korea
E-mail: macross@sogang.ac.kr

Sang-Mok Kim
Division of general education-Mathematics
Kwangwoon University, Seoul, Korea
E-mail: smkim@kw.ac.kr