DOI QR코드

DOI QR Code

COMPACT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG$\mathcal{L}$

  • Kang, Joo-Ho (Dept. of Math., Daegu University)
  • Received : 2010.02.26
  • Accepted : 2010.06.11
  • Published : 2010.06.25

Abstract

Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. We show the following : Let Alg$\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let x = $(x_i)$ and y = $(y_i)$ be vectors in H. Then the following are equivalent: (1) There exists a compact operator A = $(a_{ij})$ in Alg$\mathcal{L}$ such that Ax = y. (2) There is a sequence ${{\alpha}_n}$ in $\mathbb{C}$ such that ${{\alpha}_n}$ converges to zero and for all k ${\in}$ $\mathbb{N}$, $y_1 = {\alpha}_1x_1 + {\alpha}_2x_2$ $y_{2k} = {\alpha}_{4k-1}x_{2k}$ $y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}+x_{2k+2}$.

Keywords

Compact Interpolation;CSL-Algebra;Tridiagonal Algebra;Alg$\mathcal{L}$

References

  1. Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120.
  2. Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126. https://doi.org/10.1512/iumj.1980.29.29009
  3. Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. (4), 33 (1989), 657-672.
  4. Jo, Y. S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115. https://doi.org/10.2140/pjm.1989.140.97
  5. Jo, Y. S. and Choi, T . Y., Isomorphisms of $AlgL_n$ and $AlgL_{\infty}$, Michigan Math. J. 37 (1990), 305-314. https://doi.org/10.1307/mmj/1029004137
  6. Jo, Y. S., Kang, J. H. and Dong Wan Park, Equations AX = Y and Ax = y in AlgL, J. of Korean Math. Soc. 43 (2006), 399-411. https://doi.org/10.4134/JKMS.2006.43.2.399
  7. Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276. https://doi.org/10.1073/pnas.43.3.273
  8. Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45-68.
  9. Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418. https://doi.org/10.1016/0022-247X(89)90074-7