DOI QR코드

DOI QR Code

RULED SUBMANIFOLDS OF FINITE TYPE IN LORENTZIAN SPACE-TIMES

  • Kim, Dong-Soo (Department of Mathematics, Chonnam National University)
  • Received : 2010.05.25
  • Accepted : 2010.06.07
  • Published : 2010.06.25

Abstract

In this article, we study ruled submanifolds with nonde-generate rulings in a Lorentzian space-time, which have finite type immersion. We give a condition for k-finite type submanifolds to be of finite type.

Keywords

ruled submanifold;finite type submanifold;minimal submanifold

References

  1. B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22(1996), 117-317.
  2. B.-Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific Publ. (1984).
  3. B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), 447-453. https://doi.org/10.1017/S0004972700028616
  4. F. Dillen, I. Van de Woestijne, L. Verstraelen and J. Walrave, Ruled surfaces of finite type in Minkowski spaces, Results Math. 27(1995), 250-255. https://doi.org/10.1007/BF03322830
  5. D.-S. Kim, Ruled surfaces of finite type in Lorentzian space-times, Honam Math. J. 31(2009), 177-183. https://doi.org/10.5831/HMJ.2009.31.2.177
  6. D.-S. Kim and Y. H. Kim, B-scrolls with non-diagonalizable shape operators, Rocky Mount. J. Math. 33(2003), 175-190. https://doi.org/10.1216/rmjm/1181069992
  7. D.-S. Kim and Y. H. Kim, Finite type ruled hypersurfaces in Lorentz-Minkowski space, Honam Math. J. 30(2008), 743-748. https://doi.org/10.5831/HMJ.2008.30.4.743
  8. D.-S. Kim and Y. H. Kim, Classification of ruled submanifolds in a Lorentz-Minkowski space, Submitted.
  9. D.-S. Kim, Y. H. Kim and D. W. Yoon, Characterization of generalized B-scrolls and cylinders over finite type curves, Indian J. Pure Appl. Math. 34 (2003), 1523-1532.
  10. D.-S. Kim and Y. H. Kim and D. W. Yoon Finite type ruled surfaces in Lorentz-Minkowski space, Taiwanese J. Math. 11(2007), 1-13. https://doi.org/10.11650/twjm/1500404629

Cited by

  1. GAUSS MAPS OF RULED SUBMANIFOLDS AND APPLICATIONS I vol.53, pp.6, 2016, https://doi.org/10.4134/JKMS.j150498