DOI QR코드

DOI QR Code

SEVERAL KINDS OF INTUITIONISTIC FUZZY OPEN SETS AND INTUITIONISTIC FUZZY INTERIORS

  • Kim, Chang-Su (Department of Mathematics Education Gyeongsang National University) ;
  • Kang, Jeong-Gi (Department of Mathematics Education Gyeongsang National University) ;
  • Kim, Myoung-Jo (Department of Mathematics Education Gyeongsang National University) ;
  • Ko, Mi-Young (Department of Mathematics Education Gyeongsang National University) ;
  • Park, Mi-Ran (Department of Mathematics Education Gyeongsang National University)
  • Received : 2010.03.08
  • Accepted : 2010.06.07
  • Published : 2010.06.25

Abstract

The notion of intuitionistic fuzzy semi-pre interior (semi-pre closure) is introduced, and several related properties are investigated. Characterizations of an intuitionistic fuzzy regular open set, an intuitionistic fuzzy semi-open set and an intuitionistic fuzzy ${\gamma}$-open set are provided. A method to make an intuitionistic fuzzy regular open set (resp. intuitionistic fuzzy regular closed set) is established. A relation between an intuitionistic fuzzy ${\gamma}$-open set and an intuitionistic fuzzy semi-preopen set is considered. A condition for an intuitionistic fuzzy set to be an intuitionistic fuzzy ${\gamma}$-open set is discussed.

Keywords

Intuitionistic fuzzy semi-open (${\alpha}$-open, ${\gamma}$-open, semi-preopen, preopen, regular open) set;Intuitionistic fuzzy ${\alpha}$-interior (${\gamma}$-interior, semi-interior, preinterior, semi-pre-interior)

References

  1. K. T. Atannassov, Intuitionistic fuzzy ses, Fuzzy sets and Systems. 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  3. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems. 88(1997), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  4. H. Gurcay, D. Coker and A. Haydar Es On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy. Math. 5 (1997), 365-378.
  5. I. M. Hanafy, Intuitionistic fuzzy $\gamma$-Continuity, Canad. Math. Bull. (submitted). https://doi.org/10.4153/CMB-2009-055-0
  6. K. Hur and Y. B. Jun, On Intuitionistic fuzzy Alpha-Continuous mappigs, Honam Math. J. 25 (2000), 131-139.
  7. J. K. Jeon, Y. B. Jun and J. H. Park, Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy precontinuty, Internat. J. Math. Math. Sci. 19 (2005), 3091-3101.
  8. Y. B. Jun and S. Z. Song, Intuitionistic fuzzy semi-preopen sts and intuitionistic fuzzy semi-pre Continuous mappigs, J. Appl. Math and Computing. 19 (2005), 467-474.