DOI QR코드

DOI QR Code

T-INTERVAL-VALUED FUZZY SUBGROUPS AND RINGS

Kang, Hee-Won

  • Received : 2010.09.14
  • Accepted : 2010.10.23
  • Published : 2010.12.25

Abstract

We introduce the concepts of interval-valued fuzzy sub-groups [resp. normal subgroups, rings and ideals] and investigate some of it's properties.

Keywords

t-norm : t-interval-valued fuzzy subgroup[ring and ideal];t-interval-valued fuzzy normal subgroup

References

  1. R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63(1995) 87-90. https://doi.org/10.1016/0165-0114(94)90148-1
  2. M.B.Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy, sets, Fuzzy sets and Systems 21(1987) 1-17. https://doi.org/10.1016/0165-0114(87)90148-5
  3. K.Hur, J.G.Lee and J.Y.Choi, Interval-valued fuzzy relations. J.Korean Institute of Intelligent systems 19(3)(2009) 425-432. https://doi.org/10.5391/JKIIS.2009.19.3.425
  4. H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, To be subunited.
  5. W.J.Liu, Fuzzy invaiant subgroups and fuzzy ileds, Fuzzy sets and Systems 8(1982) 133-189. https://doi.org/10.1016/0165-0114(82)90003-3
  6. T.K.mondal and S.K.Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30(1)(1999) 20-38.
  7. B.Schweizer and A.Sklar, Statisitical metric spaces, Pacific J.Math. 10(1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
  8. L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. sci 8(1975) 199-249. https://doi.org/10.1016/0020-0255(75)90036-5