DOI QR코드

DOI QR Code

INTERVAL-VALUED FUZZY SUBGROUPS AND RINGS

  • Received : 2010.07.26
  • Accepted : 2010.11.03
  • Published : 2010.12.25

Abstract

We introduce the concepts of interval-valued fuzzy sub-groups [resp. normal subgroups, rings and ideals] and investigate some of it's properties.

Keywords

t-norm;interval-valued fuzzy subgroup[ring and ideal];interval-valued fuzzy normal subgroup

References

  1. K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems,20(1986) 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K.Atanassov and G.Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy sets and Systems 31(1989) 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  3. Baldev Benerjee and Dhiren Kr.Basnet, Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math 11(1)(2003) 139-155.
  4. R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions. Fuzzy set and systems 63(1995) 87-90. https://doi.org/10.1016/0165-0114(94)90148-1
  5. D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997) 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  6. D.Coker and A.Haydar Es, On fuzzy compact ness in intuitionstic fuzzy topological spaces, J.Fuzzy Math. 3(1995) 899-909.
  7. M.B.Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy, sets, Fuzzy sets and Systems 21(1987) 1-17. https://doi.org/10.1016/0165-0114(87)90148-5
  8. K.Hur, S.Y.Jang and H.W.Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems 2(1)(2002) 92-147.
  9. K.Hur, H.W.Kang and H.K.Song, Intuitionistic fuzzy subgroups and subrings. Honam Math.J. 25(1)(2003) 19-41.
  10. K.Hur, J.G.Lee and J.Y.Choi, Interval-valued fuzzy relations. J. Korean Institute of Intelligent systems 19(3)(2009) 425-432. https://doi.org/10.5391/JKIIS.2009.19.3.425
  11. W.J.Liu Fuzzy invaiant subgroups and fuzzy ileds, Fuzzy sets and Systems 8(1982) 133-189. https://doi.org/10.1016/0165-0114(82)90003-3
  12. T.K.mondal and S.K.Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30(1)(1999) 20-38.
  13. L.A.Zadeh, Fuzzy sets, Inform and Control 8(1965) 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  14. L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci 8(1975) 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. THE LATTICE OF INTERVAL-VALUED FUZZY IDEALS OF A RING vol.34, pp.3, 2012, https://doi.org/10.5831/HMJ.2012.34.3.351
  2. Interval-Valued Fuzzy Congruences on a Semigroup vol.13, pp.3, 2013, https://doi.org/10.5391/IJFIS.2013.13.3.231
  3. ON INTERVAL-VALUED FUZZY LATTICES vol.37, pp.2, 2015, https://doi.org/10.5831/HMJ.2015.37.2.187
  4. Interval-Valued Fuzzy Ideals of a Ring vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.198
  5. INTERVAL-VALUED FUZZY SUBGROUPS vol.35, pp.4, 2013, https://doi.org/10.5831/HMJ.2013.35.4.565
  6. INTERVAL-VALUED FUZZY GROUP CONGRUENCES vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.403
  7. INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.499
  8. Interval-valued Fuzzy Normal Subgroups vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.205
  9. Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.29
  10. INTERVAL-VALUED FUZZY GENERALIZED BI-IDEALS OF A SEMIGROUP vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.603
  11. Lattices of Interval-Valued Fuzzy Subgroups vol.14, pp.2, 2014, https://doi.org/10.5391/IJFIS.2014.14.2.154
  12. INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.525
  13. Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup vol.11, pp.4, 2011, https://doi.org/10.5391/IJFIS.2011.11.4.259